DOI QR코드

DOI QR Code

Orthodontic tooth movement after periodontal regeneration of intrabony defects

  • Conchita Martin (Section of Orthodontics, Department of Dental Clinical Specialties, Complutense University of Madrid) ;
  • Mariano Sanz (Section of Orthodontics, Department of Dental Clinical Specialties, Complutense University of Madrid)
  • Received : 2024.01.15
  • Accepted : 2024.01.16
  • Published : 2024.01.25

Abstract

The prevalence of intrabony defects in patients with advanced periodontitis stages III and IV is high. These patients usually need both periodontal treatment and orthodontic therapy, including tooth movement through bone defects, to improve masticatory function, aesthetics, and overall quality of life. Clinical practice guidelines recommend periodontal regenerative surgical interventions to resolve these defects and propose initiating orthodontic tooth movement (OTM) once periodontal therapy goals have been met. Surgical interventions using various regenerative technologies like barrier membranes and enamel matrix proteins, combined or not with bone replacement grafts, have proven effective in regenerating lost periodontal tissues. However, the combination of periodontal and orthodontic treatments requires consideration of how periodontal regenerative therapies influence OTM. Studies suggest that regenerated bone may differ in density, composition, vascularity, and cellular activity, potentially affecting the speed and efficiency of OTM, and potential root resorption of moved teeth. Understanding the sequence and timing of implementing OTM after regenerative periodontal interventions is crucial due to their interlinked processes of bone resorption and formation. This narrative review aims to uncover scientific evidence regarding these combined treatments, examining the impacts of different regenerative technologies on OTM and delineating their advantages, limitations, and best practices.

Keywords

References

  1. Kim Y. Study on the perception of orthodontic treatment according to age: a questionnaire survey. Korean J Orthod 2017;47:215-21. https://doi.org/10.4041/kjod.2017.47.4.215 
  2. Herrera D, Sanz M, Kebschull M, Jepsen S, Sculean A, Berglundh T, et al. Treatment of stage IV periodontitis: the EFP S3 level clinical practice guideline. J Clin Periodontol 2022;49 Suppl 24:4-71. https://doi.org/10.1111/jcpe.13639 
  3. Zasciurinskiene E, Bulotaite S, Bjerklin K, Lodiene G, Sidlauskas A, Zaborskis A. Knowledge, attitudes, and interest in orthodontic treatment: a crosssectional study in adults with stage III-IV periodontitis and secondary malocclusions. BMC Oral Health 2023;23:853. https://doi.org/10.1186/s12903-023-03605-8 
  4. Sanz M, Herrera D, Kebschull M, Chapple I, Jepsen S, Beglundh T, et al. Treatment of stage I-III periodontitis-the EFP S3 level clinical practice guideline. J Clin Periodontol 2020;47(Suppl 22):4-60. https://doi.org/10.1111/jcpe.13290 Erratum in: J Clin Periodontol 2021;48:163. https://doi.org/10.1111/jcpe.13403 
  5. Nibali L, Koidou VP, Nieri M, Barbato L, Pagliaro U, Cairo F. Regenerative surgery versus access flap for the treatment of intra-bony periodontal defects: a systematic review and meta-analysis. J Clin Periodontol 2020;47 Suppl 22:320-51. https://doi.org/10.1111/jcpe.13237 
  6. Sculean A, Nikolidakis D, Nikou G, Ivanovic A, Chapple IL, Stavropoulos A. Biomaterials for promoting periodontal regeneration in human intrabony defects: a systematic review. Periodontol 2000 2015;68:182-216. https://doi.org/10.1111/prd.12086 
  7. Attia MS, Shoreibah EA, Ibrahim SA, Nassar HA. Regenerative therapy of osseous defects combined with orthodontic tooth movement. J Int Acad Periodontol 2012;14:17-25. https://pubmed.ncbi.nlm. nih.gov/22479985/ 
  8. Alalola B, Asiri A, Binmoghaiseeb I, Baharoon W, Alrassi Y, Alanizy B, et al. Impact of bone-grafting materials on the rate of orthodontic tooth movement: a systematic review. Cureus 2023;15:e44535. https://doi.org/10.7759/cureus.44535 
  9. Nibali L, Sultan D, Arena C, Pelekos G, Lin GH, Tonetti M. Periodontal infrabony defects: systematic review of healing by defect morphology following regenerative surgery. J Clin Periodontol 2021;48:100-13. https://doi.org/10.1111/jcpe.13381 
  10. Stavropoulos A, Bertl K, Sculean A, Kantarci A. Regenerative periodontal therapy in intrabony defects and long-term tooth prognosis. Dent Clin North Am 2022;66:103-9. https://doi.org/10.1016/j.cden.2021.09.002 
  11. Moqadam AS, Arash V, Mirzaie M, Fereydooni M, Haghani H, Rahmani A. Effect of alveolar ridge preservation with PDFDBA on orthodontic tooth movement rate, formation of gingival invagination and root resorption: a randomized, controlled pilot study. Biomed Pharmacol J 2016;9:3. https://doi.org/10.13005/bpj/1072 
  12. Tehranchi A, Behnia H, Pourdanesh F, Behnia P, Pinto N, Younessian F. The effect of autologous leukocyte platelet rich fibrin on the rate of orthodontic tooth movement: a prospective randomized clinical trial. Eur J Dent 2018;12:350-7. https://doi.org/10.4103/ejd.ejd_424_17 
  13. Reyes Pacheco AA, Collins JR, Contreras N, Lantigua A, Pithon MM, Tanaka OM. Distalization rate of maxillary canines in an alveolus filled with leukocyte-platelet-rich fibrin in adults: a randomized controlled clinical split-mouth trial. Am J Orthod Dentofacial Orthop 2020;158:182-91. https://doi.org/10.1016/j.ajodo.2020.03.020 
  14. Barhate UH, Duggal I, Mangaraj M, Sharan J, Duggal R, Jena AK. Effects of autologous leukocyteplatelet rich fibrin (L-PRF) on the rate of maxillary canine retraction and various biomarkers in gingival crevicular fluid (GCF): a split mouth randomized controlled trial. Int Orthod 2022;20:100681. https://doi.org/10.1016/j.ortho.2022.100681 
  15. Hossain MZ, Kyomen S, Tanne K. Biologic responses of autogenous bone and beta-tricalcium phosphate ceramics transplanted into bone defects to orthodontic forces. Cleft Palate Craniofac J 1996;33:277-83. https://doi.org/10.1597/1545-1569_1996_033_0277_broaba_2.3.co_2 
  16. Araujo MG, Carmagnola D, Berglundh T, Thilander B, Lindhe J. Orthodontic movement in bone defects augmented with Bio-Oss. An experimental study in dogs. J Clin Periodontol 2001;28:73-80. https://pubmed.ncbi.nlm.nih.gov/11142670/  https://doi.org/10.1034/j.1600-051x.2001.280111.x
  17. Kawamoto T, Motohashi N, Kitamura A, Baba Y, Takahashi K, Suzuki S, et al. A histological study on experimental tooth movement into bone induced by recombinant human bone morphogenetic protein-2 in beagle dogs. Cleft Palate Craniofac J 2002;39:439-48. https://doi.org/10.1597/1545-1569_2002_039_0439_ahsoet_2.0.co_2 
  18. Kawamoto T, Motohashi N, Kitamura A, Baba Y, Suzuki S, Kuroda T. Experimental tooth movement into bone induced by recombinant human bone morphogenetic protein-2. Cleft Palate Craniofac J 2003;40:538-43. https://doi.org/10.1597/1545-1569_2003_040_0538_etmibi_2.0.co_2 
  19. Zhang D, Chu F, Yang Y, Xia L, Zeng D, Uludag H, et al. Orthodontic tooth movement in alveolar cleft repaired with a tissue engineering bone: an experimental study in dogs. Tissue Eng Part A 2011;17:1313-25. https://doi.org/10.1089/ten.TEA.2010.0490 
  20. Seifi M, Ghoraishian SA. Determination of orthodontic tooth movement and tissue reaction following demineralized freeze-dried bone allograft grafting intervention. Dent Res J (Isfahan) 2012;9:203-8. https://pubmed.ncbi.nlm.nih.gov/22623939/  https://doi.org/10.4103/1735-3327.95237
  21. Ahn HW, Ohe JY, Lee SH, Park YG, Kim SJ. Timing of force application affects the rate of tooth movement into surgical alveolar defects with grafts in beagles. Am J Orthod Dentofacial Orthop 2014;145:486-95. https://doi.org/10.1016/j.ajodo.2013.12.021 
  22. Seifi M, Arayesh A, Shamloo N, Hamedi R. Effect of nanocrystalline hydroxyapatite socket preservation on orthodontically induced inflammatory root resorption. Cell J 2015;16:514-27. https://doi. org/10.22074/cellj.2015.496 
  23. Kim KA, Choi EK, Ohe JY, Ahn HW, Kim SJ. Effect of low-level laser therapy on orthodontic tooth movement into bone-grafted alveolar defects. Am J Orthod Dentofacial Orthop 2015;148:608-17. https://doi.org/10.1016/j.ajodo.2015.04.034 
  24. Tanimoto K, Sumi K, Yoshioka M, Oki N, Tanne Y, Awada T, et al. Experimental tooth movement into new bone area regenerated by use of bone marrowderived mesenchymal stem cells. Cleft Palate Craniofac J 2015;52:386-94. https://doi.org/10.1597/12-232 
  25. Machibya FM, Zhuang Y, Guo W, You D, Lin S, Wu D, et al. Effects of bone regeneration materials and tooth movement timing on canine experimental orthodontic treatment. Angle Orthod 2018;88:171-8. https://doi.org/10.2319/062017-407 
  26. Jiang S, Liu T, Wu G, Li W, Feng X, Pathak JL, et al. BMP2-functionalized biomimetic calcium phosphate graft promotes alveolar defect healing during orthodontic tooth movement in beagle dogs. Front Bioeng Biotechnol 2020;8:517. https://doi.org/10.3389/fbioe.2020.00517 
  27. Abe T, Kunimatsu R, Tanimoto K. Comparison of orthodontic tooth movement of regenerated bone induced by carbonated hydroxyapatite or deproteinized bovine bone mineral in beagle dogs. Materials (Basel) 2023;17:112. https://doi.org/10.3390/ma17010112 
  28. Ru N, Liu SS, Bai Y, Li S, Liu Y, Wei X. BoneCeramic graft regenerates alveolar defects but slows orthodontic tooth movement with less root resorption. Am J Orthod Dentofacial Orthop 2016;149:523-32. https://doi.org/10.1016/j.ajodo.2015.09.027 
  29. Mohlhenrich SC, Kniha K, Magnuska Z, HermannsSachweh B, Gremse F, Holzle F, et al. Evaluation of different grafting materials for alveolar cleft repair in the context of orthodontic tooth movement in rats. Sci Rep 2021;11:13586. https://doi.org/10.1038/s41598-021-93033-x 
  30. Mohlhenrich SC, Kniha K, Magnuska Z, Chhatwani S, Hermanns-Sachweh B, Gremse F, et al. Development of root resorption during orthodontic tooth movement after cleft repair using different grafting materials in rats. Clin Oral Investig 2022;26:5809-21. https://doi.org/10.1007/s00784-022-04537-3 
  31. Klein Y, Fleissig O, Stabholz A, Chaushu S, Polak D. Bone regeneration with bovine bone impairs orthodontic tooth movement despite proper osseous wound healing in a novel mouse model. J Periodontol 2019;90:189-99. https://doi.org/10.1002/JPER.17-0550 
  32. Klein Y, Kunthawong N, Fleissig O, Casap N, Polak D, Chaushu S. The impact of alloplast and allograft on bone homeostasis: orthodontic tooth movement into regenerated bone. J Periodontol 2020;91:1067-75. https://doi.org/10.1002/JPER.19-0145 
  33. Sheats RD, Strauss RA, Rubenstein LK. Effect of a resorbable bone graft material on orthodontic tooth movement through surgical defects in the cat mandible. J Oral Maxillofac Surg 1991;49:1299- 303; discussion 1304. https://doi.org/10.1016/0278-2391(91)90307-8 
  34. de Ruiter A, Meijer G, Dormaar T, Janssen N, van der Bilt A, Slootweg P, et al. TCP versus autologous bone for repair of alveolar clefts in a goat model. Cleft Palate Craniofac J 2011;48:654-62. https://doi.org/10.1597/09-219 
  35. Oltramari PV, de Lima Navarro R, Henriques JF, Taga R, Cestari TM, Ceolin DS, et al. Orthodontic movement in bone defects filled with xenogenic graft: an experimental study in minipigs. Am J Orthod Dentofacial Orthop 2007;131:302.e10-7. https://doi.org/10.1016/j.ajodo.2006.07.020 
  36. Seifi M, Atri F, Yazdani MM. Effects of low-level laser therapy on orthodontic tooth movement and root resorption after artificial socket preservation. Dent Res J (Isfahan) 2014;11:61-6. https://pubmed.ncbi.nlm.nih.gov/24688562/ 
  37. Tietmann C, Broseler F, Axelrad T, Jepsen K, Jepsen S. Regenerative periodontal surgery and orthodontic tooth movement in stage IV periodontitis: a retrospective practice-based cohort study. J Clin Periodontol 2021;48:668-78. https://doi.org/10.1111/jcpe.13442 
  38. Tietmann C, Jepsen S, Heibrok H, Wenzel S, Jepsen K. Long-term stability of regenerative periodontal surgery and orthodontic tooth movement in stage IV periodontitis: 10-year data of a retrospective study. J Periodontol 2023;94:1176-86. https://doi.org/10.1002/JPER.23-0081 
  39. Tu CC, Lo CY, Chang PC, Yin HJ. Orthodontic treatment of periodontally compromised teeth after periodontal regeneration: a restrospective study. J Formos Med Assoc 2022;121:2065-73. https://doi.org/10.1016/j.jfma.2022.02.021 
  40. Ghezzi C, Vigano V, Francinetti P, Zanotti G, Masiero SA. Orthodontic treatment after induced periodontal regeneration in deep infrabony defects. Clin Adv Periodontics 2013;3:24-31. https://doi.org/10.1902/cap.2012.110085 
  41. Ghezzi C, Masiero S, Silvestri M, Zanotti G, Rasperini G. Orthodontic treatment of periodontally involved teeth after tissue regeneration. Int J Periodontics Restorative Dent 2008;28:559-67. https://pubmed.ncbi.nlm.nih.gov/19146051/ 
  42. Cardaropoli D, Re S, Manuzzi W, Gaveglio L, Cardaropoli G. Bio-Oss collagen and orthodontic movement for the treatment of infrabony defects in the esthetic zone. Int J Periodontics Restorative Dent 2006;26:553-9. https://pubmed.ncbi.nlm.nih.gov/17243328/ 
  43. Attia MS, Hazzaa HH, Al-Aziz FA, Elewa GM. Evaluation of adjunctive use of low-level diode laser biostimulation with combined orthodontic regenerative therapy. J Int Acad Periodontol 2019;21:63-73. https://pubmed.ncbi.nlm.nih.gov/31522153/ 
  44. Ogihara S, Wang HL. Periodontal regeneration with or without limited orthodontics for the treatment of 2- or 3-wall infrabony defects. J Periodontol 2010;81:1734-42. https://doi.org/10.1902/jop.2010.100127 
  45. Zampara E, Alshammari M, De Bortoli J, Mullings O, Gkisakis IG, Benalcazar Jalkh EB, et al. A histologic and histomorphometric evaluation of an allograft, xenograft, and alloplast graft for alveolar ridge preservation in humans: a randomized controlled clinical trial. J Oral Implantol 2022;48:541-9. https://doi.org/10.1563/aaid-joi-D-21-00012 
  46. Jepsen K, Tietmann C, Martin C, Kutschera E, Jager A, Wullenweber P, et al. Synergy of regenerative periodontal surgery and orthodontics improves quality of life of patients with stage iv periodontitis: 24-month outcomes of a multicenter RCT. Bioengineering (Basel) 2023;10:695. https://doi.org/10.3390/bioengineering10060695 
  47. Vardimon AD, Nemcovsky CE, Dre E. Orthodontic tooth movement enhances bone healing of surgical bony defects in rats. J Periodontol 2001;72:858-64. https://doi.org/10.1902/jop.2001.72.7.858 
  48. Jepsen K, Tietmann C, Kutschera E, Wullenweber P, Jager A, Cardaropoli D, et al. The effect of timing of orthodontic therapy on the outcomes of regenerative periodontal surgery in patients with stage IV periodontitis: a multicenter randomized trial. J Clin Periodontol 2021;48:1282-92. https://doi.org/10.1111/jcpe.13528 
  49. Attia MS, Shoreibah EA, Ibrahim SA, Nassar HA. Histological evaluation of osseous defects combined with orthodontic tooth movement. J Int Acad Periodontol 2012;14:7-16. https://pubmed.ncbi.nlm.nih.gov/22479984/