DOI QR코드

DOI QR Code

Integrated Sensing Module for Environmental Information Acquisition on Construction Site

건설현장 환경정보 수집을 위한 통합 센싱모듈 개발

  • Received : 2023.10.11
  • Accepted : 2023.11.07
  • Published : 2024.02.01

Abstract

The monitoring of environmental information (e.g. noise, dust, vibration, temperature, humidity) is crucial to the safe and sustainable operation of a construction site. However, commercial sensors exhibit certain drawbacks when applied on-site. First, the installation cost is prohibitively high. Second, these sensors have been engineered without considering the rugged and harsh conditions of a construction site, resulting in error-prone sensing. Third, construction sites are compelled to allocate additional resources in terms of manpower, expenses, and physical spaces to accommodate individual sensors. This research developed an integrated sensing module to measure the environmental information in construction site. The sensing module slashes the installation cost to 3.3%, is robust enough to harsh and outdoor sites, and consolidates multiple sensors into a single unit. The sensing module also supports GPS, LTE, and real-time sensing. The evaluation showed remarkable results including 97.5% accuracy and 99.9% precision in noise measurement, an 89.7% accuracy in dust measurement, and a 93.5% reliability in data transmission. This research empowers the collection of substantial volumes and high-quality environmental data from construction sites, providing invaluable support to decision-making process. These encompass objective regulatory compliance checking, simulations of environmental data dispersion, and the development of environmental mitigation strategies.

안전하고 지속가능한 건설현장의 운영을 위해 소음, 분진, 진동, 온·습도 등의 환경정보 모니터링은 매우 중요하다. 하지만, 상용 센서들은 단가가 상당하고, 건설현장과 같이 가혹한 환경에서 사용하도록 설계되지 않아 쉽게 고장나거나 측정값이 불안정하며, 각 환경정보마다 개별적인 센서를 설치 및 관리해야 하기 때문에 인력/비용/공간의 확보가 어렵다는 한계점이 존재한다. 본 연구는 건설현장의 소음, 분진, 진동, 온·습도 등의 환경정보를 측정하는 통합 센싱모듈을 개발했다. 구체적으로, 설치 비용을 상용 센서의 3.3% 수준으로 낮추고, 야외의 가혹한 환경에서 사용 가능하도록 설계하며, 다수의 센서를 통합하여 설치와 관리가 편리하도록 개선했다. 또한, 건설현장에서 센싱모듈을 효과적으로 사용하기 위해 GPS, LTE, 실시간 센싱(1분 이내)을 지원한다. 센싱모듈을 검증하기 위해 국가 인증 센서와 측정 성능을 비교했고, 데이터 통신을 검증하기 위해 7곳의 현장에 25회 방문하여 테스트를 진행했다. 그 결과, 소음 측정 정확도 97.5% 및 정밀도 99.9%, 분진 측정 정확도 89.7%, 데이터 송신 안정률 93.5% 등 우수한 성능을 확인했다. 본 연구는 현장으로부터 대량 및 양질의 환경정보 데이터를 수집하도록 지원하여 (1) 관련 규정/법령의 준수 여부 평가, (2) 환경정보 시뮬레이션, (3) 환경대책 수립 등 현장 의사결정에 기여한다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00241758).

References

  1. Ballesteros, M. J., Fernandez, M. D., Quintana, S., Ballesteros, J. A. and Gonzalez, I. (2010). "Noise emission evolution on construction sites. Measurement for controlling and assessing its impact on the people and on the environment." Building and Environment, Elsevier, Vol. 45, No. 3, pp. 711-717, https://doi.org/10.1016/j.buildenv.2009.08.011.
  2. Clean Air Conservation Act. (2023). (Accessed: October 6, 2023) (in Korean).
  3. Eom, C. S. and Paek, J. H. (2009). "Risk index model for minimizing environmental disputes in construction." Journal of Construction Engineering and Management, ASCE, Vol. 135, No. 1, pp. 34-41, https://doi.org/10.1061/(asce)0733-9364(2009)135:1(34).
  4. Hwang, J., Lee, G., Moon, S. and Chi, S. (2022). "Real-time estimation of construction site particulate matters using wind-applied spatial interpolation." 22nd International Conference on Construction Applications of Virtual Reality, KICEM, Seoul, South Korea.
  5. Korea Occupational Safety and Health Agency (2022). Occupational Accident Occurrence Status (in Korean).
  6. Kwon, N., Song, K., Lee, H.-S., Kim, J. and Park, M. (2018). "Construction noise risk assessment model focusing on construction equipment." Journal of Construction Engineering and Management, ASCE, Vol. 144, No. 6, pp. 04018034, https://doi.org/10.1061/(ASCE)CO.1943-7862.0001480.
  7. Lee, G., Moon, S. and Chi, S. (2022). "Real-time construction site noise mapping system based on spatial interpolation." Journal of Management Engineering, Elsevier, Vol. 39, No. 2, pp. 04022079, https://doi.org/10.1061/JMENEA.MEENG-5089.
  8. Lee, G., Moon, S., Hwang, J. and Chi, S. (2023). "Development of a real-time noise estimation model for construction sites." Advanced Engineering Informatics, Elsevier, Vol. 58, pp. 102133, https://doi.org/10.1016/j.aei.2023.102133.
  9. Lee, G., Moon, S., Won, D., Yoon, S. and Chi, S. (2021). "Real-time construction site noise mapping system based on sensing data." Proceedings of KSCE 2021 Convention, KSCE, Gwangju, South Korea (in Korean).
  10. Li, X., Song, Z., Wang, T., Zheng, Y. and Ning, X. (2016). "Health impacts of construction noise on workers: A quantitative assessment model based on exposure measurement." Journal of Cleaner Production, Vol. 135, pp. 721-731, https://doi.org/10.1016/j.jclepro.2016.06.100.
  11. Ministry of Environment. (2021). Fine Dust Management Manual (in Korean).
  12. Mousavian, N. A., Mansouri, N. and Nezhadkurki, F. (2017). "Estimation of heavy metal exposure in workplace and health risk exposure assessment in steel industries in Iran." Measurement, Vol. 102, pp. 286-290, https://doi.org/10.1016/j.measurement.2017.02.015.
  13. National Environmental Dispute Resolution Commission. (2023). Statistics of Handling Environmental Dispute Case (in Korean).
  14. Noise and Vibration Control Act. (2023). Noise and Vibration Control Act, ME (Accessed: October 6, 2023) (in Korean).
  15. Occupational Safety and Health Act. (2023). Occupational Safety and Health Act, Employment and Labor (Accessed: October 6, 2023) (in Korean).
  16. Special Act on the Reduction and Management of Fine Dust. (2023). Special Act on the Reduction and Management of Fine Dust, ME (Accessed: October 6, 2023) (in Korean).