DOI QR코드

DOI QR Code

Study on seismic performance of exterior reinforced concrete beam-column joint under variable loading speeds or axial forces

  • Guoxi Fan (College of Engineering, Ocean University of China) ;
  • Wantong Xiang (College of Engineering, Ocean University of China) ;
  • Debin Wang (School of Civil Engineering, Dalian Jiaotong University) ;
  • Zichen Dou (College of Engineering, Ocean University of China) ;
  • Xiaocheng Tang (School of Civil Engineering, Jilin Jianzhu University)
  • Received : 2023.08.11
  • Accepted : 2023.12.15
  • Published : 2024.01.25

Abstract

In order to get a better understanding of seismic performance of exterior beam-column joint, reciprocating loading tests with variable loading speeds or axial forces were carried out. The main findings indicate that only few cracks exist on the surface of the joint core area, while the plastic hinge region at the beam end is seriously damaged. The damage of the specimen is more serious with the increase of the upper limit of variable axial force. The deflection ductility coefficient of specimen decreases to various degrees after the upper limit of variable axial force increases. In addition, the higher the loading speed is, the lower the deflection ductility coefficient of the specimen is. The stiffness of the specimen decreases as the upper limit of variable axial force or the loading speed increase. Compared to the influence of variable axial force, the influence of the loading speed on the stiffness degradation of the specimen is more obvious. The cumulative energy dissipation and the equivalent viscous damping coefficient of specimen decrease with the increase of loading speed. The influence of variable axial force on the energy dissipation of specimen varies under different loading speeds. Based on the truss model, the biaxial stress criterion, the Rankine criterion, the Kent-Scott-Park model, the equivalent theorem of shearing stress, the softened strut-and-tie model, the controlled slip theory and the proposed equations, a calculation method for the shear capacity is proposed with satisfactory prediction results.

Keywords

Acknowledgement

This work was supported by National Natural Science Foundation of China (Grant No. 52008385), Natural Science Foundation of Shandong Province (Grant No. ZR2018BEE041). The authors would like to express their gratitude for the support.

References

  1. ACI 318-19 (2019), Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, MI, USA.
  2. Alhassan, M.A., Al-Rousan, R.Z., Amaireh, L.K. and Barfed, M.H. (2018), "Nonlinear finite element analysis of BC connections: Influence of the column axial load, jacket thickness, and fiber dosage", Struct., 16, 50-62. https://doi.org/10.1016/j.istruc.2018.08.011.
  3. Alkhawaldeh, A.A. and Al-Rousan, R.Z. (2022), "Upgrading cyclic response of heat-damaged RC beam-column joints using CFRP sheets", Case Stud. Constr. Mater., 17, e01699. https://doi.org/10.1016/j.cscm.2022.e01699.
  4. Alkhawaldeh, A.A. and Alrousan, R.Z. (2023), "Improving cyclic response of heat-damaged non-ductile RC joints using CFRP hybrid systems", Constr. Build. Mater., 377, 131150. https://doi.org/10.1016/j.conbuildmat.2023.131150.
  5. Al-Rousan, R. (2020), "Behavior of BC connections damaged by thermal shock", Mag. Civil Eng., 7, 9910-9910. https://doi.org/10.18720/MCE.99.10.
  6. Al-Rousan, R.Z. (2022a), "Cyclic behavior of alkali-silica reaction-damaged reinforced concrete beam-column joints strengthened with FRP composites", Case Stud. Constr. Mater., 16, e00869. https://doi.org/10.1016/j.cscm.2022.e00869.
  7. Al-Rousan, R.Z. (2022b), "Cyclic lateral behavior of NLFEA heat-damaged circular CFT steel columns confined at the end with CFRP composites", Case Stud. Constr. Mater., 17, e01223. https://doi.org/10.1016/j.cscm.2022.e01223.
  8. Al-Rousan, R.Z., Alhassan, M.A. and Al-omary, R.J. (2021), "Response of interior beam-column connections integrated with various schemes of CFRP composites", Case Stud. Constr. Mater., 14, e00488. https://doi.org/10.1016/j.cscm.2021.e00488.
  9. Al-Rousan, R.Z. and Alkhawaldeh, A. (2021a), "Numerical simulation of the influence of bond strength degradation on the behavior of reinforced concrete beam-column joints externally strengthened with FRP sheets", Case Stud. Constr. Mater., 15, e00567. https://doi.org/10.1016/j.cscm.2021.e00567.
  10. Al-Rousan, R.Z. and Alkhawaldeh, A. (2021b), "Behavior of heated damaged reinforced concrete beam-column joints strengthened with FRP", Case Stud. Constr. Mater., 15, e00584. https://doi.org/10.1016/j.cscm.2021.e00584.
  11. Al-Rousan, R.Z. and Alnemrawi, B.R. (2023), "Cyclic behavior of CFRP confined circular CFST damaged by alkali-silica reaction", Int. J. Civil Eng., 21(7), 1159-1180. 10.1007/s40999-023-00820-w.
  12. Al-Rousan, R., Nusier, O., Abdalla, K., Alhassan, M. and Lagaros, N.D. (2022), "NLFEA of sulfate-damaged circular CFT steel columns confined with CFRP composites and subjected to axial and cyclic lateral loads", Build., 12(3), 296. https://doi.org/10.3390/buildings12030296.
  13. Al-Rousan, R.Z. and Sharma, A. (2021), "Integration of FRP sheet as internal reinforcement in reinforced concrete beam-column joints exposed to sulfate damaged", Struct., 31, 891-908. https://doi.org/10.1016/j.istruc.2021.02.034.
  14. Araby, M.Z., Rizal, S., Abdullah, Afifuddin, M. and Hasan, M. (2022), "Deformation capacity of RC beam-column joints strengthened with ferrocement", Sustainab., 14(8), 4398. https://doi.org/10.3390/su14084398.
  15. Asprone, D., Frascadore, R., Ludovico, M.D., Prota, A. and Manfredi, G. (2012), "Influence of strain rate on the seismic response of RC structures", Eng. Struct., 35, 29-36. https://doi.org/10.1016/j.engstruct.2011.10.025.
  16. Belkacem, M.A., Bechtoula, H., Bourahla, N. and Belkacem, A.A. (2019), "Effect of axial load and transverse reinforcements on the seismic performance of reinforced concrete columns", Front. Struct. Civil Eng., 13(4), 831-851. https://doi.org/10.1007/s11709-018-0513-3.
  17. Bischoff, P.H. and Perry, S.H. (1991), "Compressive behaviour of concrete at high strain rates", Mater. Struct., 24, 425-450. 10.1007/bf02472016.
  18. Cao, W.L., Zhang, Y.B., Dong, H.Y., Zhou, Z.Y. and Qiao, Q.Y. (2014), "Experimental study on the seismic performance of recycled concrete brick walls embedded with vertical reinforcement", Mater., 7(8), 5934-5958. https://doi.org/10.3390/ma7085934.
  19. Chen, W.F. (2007), Plasticity in Reinforced Concrete, J. Ross Publishing, Plantation, FL, USA.
  20. Dabiri, H., Kaviani, A. and Kheyroddin, A. (2020), "Influence of reinforcement on the performance of non-seismically detailed RC beam-column joints", J. Build. Eng., 31, 101333. https://doi.org/10.1016/j.jobe.2020.101333.
  21. Das, P.K., Dutta, S.C. and Datta, T.K. (2021), "Seismic behavior of plan and vertically irregular structures: State of art and future challenges", Nat. Hazards Rev., 22(2), 04020062. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000440.
  22. Fan, G.X. and Song, Y.P. (2014), "Effect of axial compression ratio on dynamic mechanical properties of RC beam-column joints", Mag. Concrete Res., 66(23), 1219-1236. https://doi.org/10.1680/macr.14.00110.
  23. Fan, G.X., Song, Y.P. and Wang, L.C. (2014), "Experimental study on the seismic behavior of reinforced concrete beam-column joints under various strain rates", J. Reinf. Plast. Compos., 33(7), 601-618. https://doi.org/10.1177/0731684413512706.
  24. Fan, G.X., Wang, D.B. and Jia, J. (2018), "Improvement, analytical verification and application of RC frame beam-column joint models", Earthq. Struct., 14(3), 273-283. https://doi.org/10.12989/eas.2018.14.3.273.
  25. Frappa, G. and Pauletta, M. (2022), "Seismic retrofitting of a reinforced concrete building with strongly different stiffness in the main directions", Proceedings of 14th fib International PhD Symposium in Civil Engineering, Rome, Italy, September.
  26. GB 50010-2010 (2011), Code for Design of Concrete Structures, Construction Industry Press, Beijing, China.
  27. Gombosuren, D. and Maki, T. (2020), "Prediction of joint shear deformation index of RC beam-column joints", Build., 10(10), 176. https://doi.org/10.3390/buildings10100176.
  28. Jin, L., Wan, S.Y., Li, D. and Du, X.L. (2022a), "Size effect and strain rate effect on seismic behavior of reinforced concrete beam-column joints", Struct. Concrete, 23(3), 1453-1468. https://doi.org/10.1002/suco.202100670.
  29. Jin, L., Zhang, B.L., Chen, F.J., Yu, W.X., Lei, Y.S., Miao, L.Y. and Du X.L. (2022b), "Numerical investigations on the strain-rate-dependent mechanical behavior and size effect of RC shear walls", Int. J. Impact Eng., 167, 104279. https://doi.org/10.1016/j.ijimpeng.2022.104279.
  30. Juhasz, K.P., Schaul, P. and Nagy, L. (2017), "Effect of the loading speed on fibre reinforced concrete beams", IOP Conf. Ser.: Mater. Sci. Eng., 246(1), 012040. https://doi.org/10.1088/1757-899X/246/1/012040.
  31. Kim, H.G., Jeong, C.Y., Kim, M.J., Lee, Y.J., Park, J.H. and Kim, K.H. (2018), "Prediction of shear strength of reinforced concrete beams without shear reinforcement considering bond action of longitudinal reinforcements", Adv. Struct. Eng., 21(1), 30-45. https://doi.org/10.1177/1369433217706778.
  32. Luo, W.W., Jiang, L.C., Lei, C., Wang, L.P., Tian, Y., Yang, S.J. and Zhang, W. (2021), "Effects of axial restraints on beam flexural and joint shear behaviors in reinforced concrete frames under seismic loading", J. Earthq. Eng., 27(1), 121-141. https://doi.org/10.1080/13632469.2021.1997839.
  33. Li, X.X., Wu, Z.M., Zheng, J.J., Liu, H.C. and Dong, W. (2018), "Hysteretic bond stress-slip response of deformed bars in concrete under uniaxial lateral pressure", J. Struct. Eng., 144(6), 04018041. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002031.
  34. Marder, K.J., Motter, C.J., Elwood, K.J. and Clifton, J.C. (2018), "Effects of variation in loading protocol on the strength and deformation capacity of ductile reinforced concrete beams", Earthq. Eng. Struct. Dyn., 47(11), 2195-2213. https://doi.org/10.1002/eqe.3064.
  35. Meng, J.Q., Meng, G., Feng, S. and Zhu, W.Q. (2015), "Flexural ductility test of prestressed section steel ultra-high strength concrete beams", J. Harbin Inst. Technol., 47(4), 64-70. https://doi.org/10.11918/j.issn.0367-6234.2015.04.011.
  36. Miani, M., Marco, C.D., Frappa, G. and Pauletta, M. (2022), "Effects of dissipative systems on the seismic behavior of irregular buildings-Two case studies", Build., 10, 1-27. https://doi.org/10.3390/buildings10110202.
  37. Mukherjee, A. and Joshi, M. (2005), "FRPC reinforced concrete beam-column joints under cyclic excitation", Compos. Struct., 70(2), 185-199. https://doi.org/10.1016/j.compstruct.2004.08.022.
  38. Panagiotakos, T.B. and Fardis, M.N. (2001), "Deformations of reinforced concrete members at yielding and ultimate", ACI Struct. J., 98(2), 135-148. https://doi.org/10.14359/10181.
  39. Pang, R. and Song, L.F. (2021), "Stochastic dynamic response analysis of the 3D slopes of rockfill dams based on the coupling randomness of strength parameters and seismic ground motion", Mathemat., 9(24), 3256. https://doi.org/10.3390/math9243256.
  40. Park, R. (1989), "Evaluation of ductility of structures and structural assemblages from laboratory testing", Bull. N.Z. Soc. Earthq. Eng., 22(3), 155-166. https://doi.org/10.5459/bnzsee.22.3.155-166.
  41. Plauk, G. (1982), "Concrete structures under impact and impulsive loading", Symposium on Concrete Structures under Impact and Impulsive Loading, Berlin, Germany, May.
  42. Roller, C., Mayrhofer, C., Riedel, W. and Thoma, K. (2013), "Residual load capacity of exposed and hardened concrete columns under explosion loads", Eng. Struct., 55, 66-72. https://doi.org/10.1016/j.engstruct.2011.12.004.
  43. Scott, B.D., Park, R. and Priestly, M.J.N. (1982), "Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates", J. Am. Concrete Inst., 79(1), 13-27. https://doi.org/10.14359/10875.
  44. Shayanfar, J., Hemmati, A. and Bengar, H.A. (2019), "A simplified numerical model to simulate RC beam-column joints collapse", Bull. Earthq. Eng., 17, 803-844. https://doi.org/10.1007/s10518-018-0472-z.
  45. Soleimani, S.M., Sayyar and Roudsari, S. (2019), "Analytical study of reinforced concrete beams tested under quasi-static and impact loadings", Appl. Sci., 9(14), 2838. https://doi.org/10.3390/app9142838.
  46. Sun, X.Y. and Huang, C.K. (2006), "Research on shear behavior of reinforced concrete beams under cyclic loading", J. Dalian Univ. Technol., 46(1), 69-74. https://doi.org/10.3321/j.issn:1000-8608.2006.01.015.
  47. Wang, L.P., Tian, Y., Luo, W.W., Li, G.C., Zhang, W., Liu, S.W. and Zhang, C.Y. (2019), "Seismic performance of axially restrained reinforced concrete frame beams", J. Struct. Eng., 145(5), 04019019. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002306.
  48. Wang, Z.Y., Mao, C.X. and Xie, L.L. (2020), "Investigation on seismic performance of bidirectional self-centering reinforced concrete frame structures by shaking table tests", Shock Vib., 2020, 4868936. https://doi.org/10.1155/2020/4868936.
  49. Wei, W.W., Gong, J.X. and Che, Y. (2011), "Shear strength model for reinforced concrete beams with web reinforcement", Mag. Concrete Res., 63(6), 423-431. https://doi.org/10.1680/macr.10.00020.
  50. Wu, B.Y., Sun, G.J., Li, H.J. and Wang, S.Y. (2022), "Effect of variable axial load on seismic behaviour of reinforced concrete columns", Eng. Struct., 250, 113388. https://doi.org/10.1016/j.engstruct.2021.113388.
  51. Wu, T., Wei, H. and Liu, X. (2018), "Shear strength of interior beam-column joints with lightweight aggregate concrete", Mag. Concrete Res., 70(3), 109-128. https://doi.org/10.1680/jmacr.17.00083.
  52. Xiao, S.Y., Li, J.B. and Mo, Y.L. (2018), "Effect of loading speed on cyclic behavior of reinforced concrete beams", Adv. Struct. Eng., 21(7), 990-1001. https://doi.org/10.1177/136943321773711.
  53. Xu, G.S., Wu, B., Jia, D.D., Xu, X.T. and Yang G. (2018), "Quasistatic tests of RC columns under variable axial forces and rotations", Eng. Struct., 162, 60-71. https://doi.org/10.1016/j.engstruct.2018.02.004.
  54. Yan, Q.S., Liu, C., Wu, J. and Zhuang, T.S. (2020), "Experimental and numerical investigation of reinforced concrete pile subjected to near-field non-contact underwater explosion", Int. J. Struct. Stab. Dyn., 20(6), 2040003. https://doi.org/10.1142/S0219455420400039.
  55. Zhang, Y., Li, B.B, Li, Z., Ma, G. and Liu, Y.Z. (2021), "Seismic performance of interior beam-column joints in reinforced glazed hollow bead insulation concrete frames", Eng. Struct., 228, 111494. https://doi.org/10.1016/j.engstruct.2020.111494.
  56. Zhou, C.D., Tian, M.W. and Guo, K.P. (2019), "Seismic partitioned fragility analysis for high-rise RC chimney considering multidimensional ground motion", Struct. Des. Tall Spec. Build., 28(1), e1568. https://doi.org/10.1002/tal.1568.