Acknowledgement
본 논문은 한국연구재단의 지원(NRF-2017R1A2B3008937) 연구의 일환으로 수행되었음.
References
- KDS 41 17 00. Seismic Building Design Code. Korea Construction Standards Center; c2019.
- ASCE 7-16. Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Reston, VA: American Society of Civil Engineers; c2017.
- NIST GCR 12-917-20. Tentative Framework for Development of Advanced Seismic Design Criteria for New Buildings. Gaithersburg, MD: National Institute of Standards and Technology; c2017.
- AISC 341-22. Seismic Provisions for Structural Steel Buildings. Chicago, IL: American Institute of Steel Construction; c2022.
- Shim JE, Choi I, Kim JH. Performance-Based Evaluation of Seismic Demand Proposals for RC Ordinary Moment Frames by Spectrum Revision. EESK J. Earthquake Eng. 2022 Sep;26(5):211-217. https://doi.org/10.5000/EESK.2022.26.5.211
- Kim M, Han SW, Kim T. Seismic Collapse Risk for Non-Ductile Reinforce Concrete Buildings According to Seismic Design Category. EESK J. Earthquake Eng. 2021 Jul;25(4):161-168. https://doi.org/10.5000/EESK.2021.25.4.161
- Han JM, Lee CS, Han SW. Load-displacement Response of Gravity Load Designed Reinforced Concrete Moment Frames with Various Height of Masonry Infill Walls. EESK J. Earthquake Eng. 2020 Jan;24(1):39-47. https://doi.org/10.5000/EESK.2020.24.1.039
- Kim CH, Lee SJ, Heo SJ, Eom TS. Investigation of Seismic Performance of RC Wall-Slab Frames with Masonry Infill. EESK J. Earthquake Eng. 2022 May;26(3):137-147. https://doi.org/10.5000/EESK.2022.26.3.137
- Kim T, Han SW. Effect of Analysis Procedures on Seismic Collapse Risk of Steel Special Moment Frames. EESK J. Earthquake Eng. 2020 Nov;24(6):243-251. https://doi.org/10.5000/EESK.2020.24.6.243
- Elkady A, Lignos DG. Modeling of the Composite Action in Fully Restrained Beam-to-column Connection: Implications in the Seismic Design and Collapse Capacity of Steel Special Moment Frames. Earthq Eng Struct D. 2013 Oct;43(13):1935-1954. https://doi.org/10.1002/eqe.2430
- AISC 341-22. Seismic Provisions for Structural Steel Buildings. Chicago, IL: American Institute of Steel Construction; c2022.
- AISC 358-22. Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications. Chicago, IL: American Institute of Steel Construction; c2022.
- AISC 360-22. Specification for Structural Steel Buildings. Chicago, IL: American Institute of Steel Construction; c2022.
- KDS 41 31 00. Korean Building Code for Steel Structures. Korea Construction Standard Center; c2019.
- Han SW, Kim TO, Baek SJ. Seismic performance evaluation of steel ordinary moment frames. Earthq. Spectra. 2018 Feb;34(1):55-76. https://doi.org/10.1193/011117EQS010M
- NIST GCR 10-917-8. Evaluation of the FEMA P695 Methodology for Quantification of Building Seismic Performance Factors. Gaithersburg, MD: National Institute of Standards and Technology; c2017.
- Computers and Structures Inc. ETABS v18.2.0. software. Available from: http://www.csiamerica.com/.
- McKenna F. OpenSees: A Framework for Earthquake Engineering Simulation. Comput Sci Eng. 2011 Jul;13(4):58-66. https://doi.org/10.1109/MCSE.2011.66
- NIST GCR 17-917-45. Recommended Modeling Parameters and Acceptance Criteria for Nonlinear Analysis in Support of Seismic Evaluation, Retrofit, and Design. Gaithersburg, MD: National Institute of Standards and Technology; c2017.
- Ibarra LF, Medina RA, Krawinkler H. Hysteretic Models That Incorporate Strength and Stiffness Deterioration. Earthq Eng Struct D. 2005 Oct;34(12):1489-1511. https://doi.org/10.1002/eqe.495
- Lignos DG, Hartloper AR, Elkady A, Deierlein GG, Hamburger R. Proposed Updates to the ASCE 41 Nonlinear Modeling Parameters for Wide-flange Steel Columns in Support of Performance-based Seismic Engineering. J. Struct. Eng. 2019 Sep;145(9):04019083.
- Bech D, Tremayne B, Houston J. Proposed Changes to Steel Column Evaluation Criteria for Extisting Buildings. In Improving the Seismic Performance of Existing Buildings and Other Structures 2015. 2015:255-272.
- Lignos DG, Krainkler H. Deterioration Modeling of Steel Components in Support of Collapse Prediction of Steel Moment Frames under Earthquake Loading. J. Struct. Eng. 2011 Nov;137(11):129-1302. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376
- ASCE 41-17. Seismic Evaluation and Retrofit of Existing Buildings. Reston, VA: American Society of Civil Engineers; c2017.
- Gupta A, Krawinkler H. Seismic Demands for the Performance Evaluation of Steel Moment Resisting Frame Structures. Rep. No. 132. Stanford, CA: John A. Blume Earthquake Engineering Research Center; c1999.
- Han SW, Kwon GU, Moon KH. Cyclic behaviour of post-Northridge WUF-B connections. J. Constr. Steel Res. 20077 Mar;63(3): 365-374. https://doi.org/10.1016/j.jcsr.2006.05.003
- Zareian F, Medina RA. A practical method for proper modeling of structural damping in inelastic plane structural systems. Comput. Struct. 2010 Jan;88(1-2):45-53. https://doi.org/10.1016/j.compstruc.2009.08.001
- FEMA P695. Quantification of Buildings Seismic Performance Factors. Washington, DC: Federal Emergency Management Agency; c2009.
- Krishnan S, Muto M. Mechanism of collapse of tall steel moment-frame buildings under earthquake excitation. J. Struct. Eng. 2012 Nov;138(11):1361-1387. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000573
- Vamvatsikos D, Cornell CA. Incremental dynamic analysis. Earthq. Eng. Struct. Dyn. 2002 Mar;31(3):491-514. https://doi.org/10.1002/eqe.141
- Eads L, Miranda E, Krawinkler H, Lignos DG. An efficient method for estimating the collapse risk of structures in seismic regions. Earthq. Eng. Struct. Dyn. 2013 Jan;42(1):25-41. https://doi.org/10.1002/eqe.2191