DOI QR코드

DOI QR Code

기상조절 실험용 드론의 설계·제작과 활용에 관한 연구

Development and Case Study of Unmanned Aerial Vehicles (UAVs) for Weather Modification Experiments

  • 구해정 (국립기상과학원 기상응용연구부) ;
  • 벨로리드 밀로슬라브 (국립기상과학원 기상응용연구부) ;
  • 황현준 (국립기상과학원 기상응용연구부) ;
  • 김민후 (국립기상과학원 기상응용연구부) ;
  • 김부요 (국립기상과학원 기상응용연구부) ;
  • 차주완 (국립기상과학원 기상응용연구부) ;
  • 이용희 (국립기상과학원 기상응용연구부) ;
  • 백정은 (국립기상과학원 기상응용연구부) ;
  • 정재원 (주식회사 디지키) ;
  • 서성규 (주식회사 디지키)
  • Hae-Jung Koo (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Miloslav Belorid (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Hyun Jun Hwang (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Min-Hoo Kim (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Bu-Yo Kim (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Joo Wan Cha (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Yong Hee Lee (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Jeongeun Baek (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Jae-Won Jung (DigiQuay Incorporated) ;
  • Seong-Kyu Seo (DigiQuay Incorporated)
  • 투고 : 2023.08.27
  • 심사 : 2023.12.06
  • 발행 : 2024.02.29

초록

Under the leadership of the National Institute of Meteorological Sciences (NIMS), the first domestic autonomous flight-type weather modification experimental drone for fog and lower-level cloud seeding was developed in 2021. This drone is designed based on a multi-copter configuration with a maximum takeoff weight of approximately 25 kg, enabling the installation of up to four burning flares for seeding materials and facilitating weather observations (temperature, pressure, humidity, and wind) as well as aerosol (PM10, PM2.5, and PM1.0) particle measurements. This research aims to introduce the construction of the drone and its recent applications over the past two years, providing insights into the experimental procedures, effectiveness verification, and improvement directions of the weather modification drone-based rain enhancement. In particular, partial confirmation of the experimental effects was obtained through the fog dissipation experiment on December 10, 2021, and the lower-level cloud seeding case study on October 5, 2022. To enhance the scope and rainfall amount of weather modification experiments using drones, various technological approaches, including adjustments to experimental altitude, seeding lines, seeding amount, and verification methods are necessary. Through this research, we aim to propose the development direction for weather modification drone technology, which will serve as foundational technology for practical application of domestic rain enhancement technology.

키워드

과제정보

본 연구는 기상청 국립기상과학원 "기상조절 및 구름물리연구"(KMA2018-00224)의 지원으로 수행되었습니다.

참고문헌

  1. Cha, J. W., and Coauthors, 2019: Analysis of results and technics about precipitation enhancement by aircraft seeding in Korea. Atmosphere, 29, 481-499, doi:10.14191/Atmos.2019.29.4.481.
  2. Cha, J. W., H. J. Koo, B.-Y. Kim, B. Miloslav, H. J. Hwang, M. H. Kim, K.-H. Chang, and Y. H. Lee, 2023: Analysis of rain drop size distribution to elucidate the precipitation process using a cloud microphysics conceptual model and in situ measurement. Asia-Pac. J. Atmos. Sci., 59, 257-269, doi:10.1007/s13143-022-00299-w.
  3. Chae, S., K.-H. Chang, S. Seo, J.-Y. Jeong, B.-J. Kim, C. K. Kim, S. S. Yum, and J. Kim, 2018: Numerical simulations of airborne glaciogenic cloud seeding using the WRF model with the modified morrison scheme over the Pyeongchang region in the winter of 2016. Adv. Meteor., 2018, 1-15, doi:10.1155/2018/8453460.
  4. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
  5. Cho, H. J., 2003: Analysis of hazardous fog and index development in Korea. J. Korean Geogr. Soc., 38, 478-489.
  6. Dolan, B., B. Fuchs, S. A. Rutledge, E. A. Barnes, and E. J. Thompson, 2018: Primary modes of global drop size distributions. J. Atmos. Sci., 75, 1453-1476, doi:10.1175/JAS-D-17-0242.1.
  7. Gil, G., M. Yoo, and J. Park, 2020: A study on the development of airworthiness standards for VTOL UAS. J. Aeros. Syst. Eng., 14, 44-53, doi:10.20910/JASE.2020.14.1.44.
  8. Hedworth, H. A., T. Sayahi, K. E. Kelly, and T. Saad, 2021: The effectiveness of drones in measuring particulate matter. J. Aerosol. Sci., 152, 105702, doi:10.1016/j.jaerosci.2020.105702.
  9. Heo, K.-Y., and K.-J. Ha, 2004: Classification of synoptic pattern associated with coastal fog around the Korean peninsula. J. Korean Meteorol. Soc., 40, 541-556.
  10. Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmospheres, 113, 1-8, doi:10.1029/2008JD009944.
  11. Jung, W., and Coauthors, 2022: Progressive and prospective technology for cloud seeding experiment by unmanned aerial vehicle and atmospheric research aircraft in Korea. Adv. Meteor., 2022, 1-14, doi:10.1155/2022/3128657.
  12. Kim, B.-Y., J. W. Cha, A.-R. Ko, W. Jung, and J.-C. Ha, 2020a: Analysis of the occurrence frequency of seedable clouds on the Korean Peninsula for precipitation enhancement experiments. Remote Sens., 12, 1487, doi:10.3390/rs12091487.
  13. Kim, B.-Y., J. W. Cha, W. Jung, and A.-R. Ko, 2020b: Precipitation enhancement experiments in catchment areas of Dams: Evaluation of water resource augmentation and economic benefits. Remote Sens., 12, 3730, doi:10.3390/rs12223730.
  14. Kim, J.-S., J. H. Kim, S.-H. Park, and Y.-C. Kim, 2013: The study of characteristics of Korea Fog and Forecast Guidance. J. Korean Soc. Aviation Aeronautics, 21, 68-73, doi:10.12985/ksaa.2013.21.1.068.
  15. Lim, Y.-K., B.-Y. Kim, K. H. Chang, J. W. Cha, and Y. H. Lee, 2022: Analysis of PM10 reduction effects artificial rain enhancement using numerical models. Atmosphere, 32, 341-351, doi:10.14191/Atmos.2022.32.4.341.
  16. Nakanishi, M., and H. Niino, 2006: An improved Meller-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397-407, doi:10.1007/s10546-005-9030-8.
  17. NIMS, 2020: Development of application technology on atmospheric research aircraft (IV). National Institute of Meteorological Sciences. Press, 139 pp.
  18. NIMS, 2021: Development off application technology on atmospheric research aircraft (V). National Institute of Meteorological Sciences Press, 122 pp.
  19. Wang, N., T. Yao, B. Xu, A. A. Chen, and W. Wang, 2019: Spatiotemporal pattern, trend, and influence of glacier change in tibetan plateau and surroundings under global warming. Bull. Chin. Acad. Sci., 34, 1220-1232, doi:10.16418/j.issn.1000-3045.2019.11.005.
  20. Weber, K., G. Heweling, C. Fischer, and M. Lange, 2017: The use of and octocopter UAV for the determination of air pollution-a case study of the traffic induced pollution plume around a river bridge in duesseldorf, Germany. Int. J. Education, 2, 63-66.
  21. Yang, H.-Y., and S.-N. Oh, 2005: Investigation on cloud properties for fog modification at Daegwallyeong Mountains. J. Korean Soc. Hazard Mitigation, 5, 45-56.