DOI QR코드

DOI QR Code

A Strategy on the Growth of Large Area Polycrystalline Si Virtual Substrate Using Al-Induced Crystallization

알루미늄 유도 결정화를 이용한 대면적 다결정 Si 가상 기판 성장 전략

  • Dohyun Kim (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Kwangwook Park (Division of Advanced Materials Engineering, Jeonbuk National University)
  • 김도현 (전북대학교 신소재공학부) ;
  • 박광욱 (전북대학교 신소재공학부)
  • Received : 2023.10.30
  • Accepted : 2023.11.12
  • Published : 2024.01.01

Abstract

Aluminum-induced crystallization (AIC) as a route to reduce the fabrication cost and to obtain polycrystalline Si (p-Si) thin-film of large grain size is a promising alternative of single-crystalline (s-Si) substrate or p-Si thin-film obtained by conventional methods such as solid phase crystallization (SPC) and laser-induced crystallization (LIC). As the AIC process occurs at the interface between a-Si and Al thin-films, there are various process and interface parameters. Also, it directly means that there is a certain parametric window to obtain p-Si of large grain size having uniform crystal orientation. In this article, we investigate the effect of the various process and interface parameters to obtain p-Si of large grain size and uniform crystal orientation from the literature review. We also suggest the potential use of the p-Si as a virtual substrate for the growth of various compound semiconductors in a form of low-dimension as well as thin-film as a way for their monolithic integration on Si.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2022R1F1A1064130).

References

  1. I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, Prog. Photovoltaics: Res. Appl., 15, 575 (2007). doi: https://doi.org/10.1002/pip.765
  2. G. Fortunato, Thin Solid Films, 296, 82 (1997). doi: https://doi.org/10.1016/S0040-6090(96)09378-9
  3. Z. Shi and M. A. Green, Prog. Photovoltaics: Res. Appl., 6, 247 (1998). doi: https://doi.org/10.1002/(sici)1099-159x(199807/08)6:4<2 47::aid-pip216>3.0.co;2-2
  4. M. Miyao and T. Sadoh, Jpn. J. Appl. Phys., 56, 05DA06 (2017). doi: https://doi.org/10.7567/JJAP.56.05DA06
  5. P. C. van der Wilt, M. G. Kane, A. B. Limanov, A. H. Firester, L. Goodman, J. Lee, J. R. Abelson, A. M. Chitu, and J. S. Im, MRS Bull., 31, 461 (2006). doi: https://doi.org/10.1557/mrs2006.119
  6. L. Haji, P. Joubert, J. Stoemenos, and N. A. Economou, J. Appl. Phys., 75, 3944 (1994). doi: https://doi.org/10.1063/1.356014
  7. O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, and S. R. Wenham, Appl. Phys. Lett., 73, 3214 (1998). doi: https://doi.org/10.1063/1.122722
  8. O. Nast and S. R. Wenham, J. Appl. Phys., 88, 124 (2000). doi: https://doi.org/10.1063/1.373632
  9. S. R. Herd, P. Chaudhari, and M. H. Brodsky, J. Non-Cryst. Solids, 7, 309 (1972). doi: https://doi.org/10.1016/0022-3093(72)90267-0
  10. O. Nast and A. J. Hartmann, J. Appl. Phys., 88, 716 (2000). doi: https://doi.org/10.1063/1.373727
  11. M. Miyasaka, K. Makihira, T. Asano, E. Polychroniadis, and J. Stoemenos, Appl. Phys. Lett., 80, 944 (2002). doi: https://doi.org/10.1063/1.1447014
  12. M. S. Haque, H. A. Naseem, and W. D. Brown, J. Appl. Phys., 75, 3928 (1994). doi: https://doi.org/10.1063/1.356039
  13. W. Knaepen, C. Detavernier, and R. L. van Meirhaeghe, J. J. Sweet, and C. Lavoie, Thin Solid Films, 516, 4946 (2008). doi: https://doi.org/10.1016/j.tsf.2007.09.037
  14. T. L. Alford, P. K. Shetty, N. D. Theodore, N. Tile, D. Adams, and J. W. Mayer, Thin Solid Films, 516, 3940 (2008). doi: https://doi.org/10.1016/j.tsf.2007.07.204
  15. Y. Sugimoto, N. Takata, T. Hirota, K. I. Ikeda, F. Yoshida, H. Nakashima, and H. Nakashima, Jpn. J. Appl. Phys., 44, 4770 (2005). doi: https://doi.org/10.1143/JJAP.44.4770
  16. D. Dimova-Malinovska, V. Grigorov, M. Nikolaeva-Dimitrova, O. Angelov, and N. Peev, Thin Solid Films, 501, 358 (2006). doi: https://doi.org/10.1016/j.tsf.2005.07.157
  17. Y. H. Zhao, J. Y. Wang, and E. J. Mittemeijer, Thin Solid Films, 433, 82 (2003). doi: https://doi.org/10.1016/S0040-6090(03)00282-7
  18. A. Hiraki, Surf. Sci. Rep., 3, 357 (1983). doi: https://doi.org/10.1016/0167-5729(84)90003-7
  19. Z. M. Wang, J. Y. Wang, L.P.H. Jeurgens, and E. J. Mittemeijer, Phys. Rev. B, 77, 045424 (2008). doi: https://doi.org/10.1103/PhysRevB.77.045424
  20. Z. Wang, L.P.H. Jeurgens, J. Y. Wang, and E. J. Mittemeijer, Adv. Eng. Mater., 11, 131 (2009). doi: https://doi.org/10.1002/adem.200800340
  21. O. Tuzun, Y. Qiu, A. Slaoui, I. Gordon, C. Maurice, S. Venkatachalam, S. Chatterjee, G. Beaucarne and J. Poortmans, Sol. Energy Mater. Sol. Cells, 94, 1869 (2010). doi: https://doi.org/10.1016/j.solmat.2010.06.031
  22. Z. M. Wang, J. Y. Wang, L.P.H. Jeurgens, and E. J. Mittemeijer, Phys. Rev. Lett., 100, 125503 (2008). doi: https://doi.org/10.1103/PhysRevLett.100.125503
  23. A. Tankut, M. Karaman, I. Yildiz, S. Canli, and R. Turan, Phys. Status Solid, 212, 2702 (2015). doi: https://doi.org/10.1002/pssa.201532857
  24. M. Nakata, K. Toko, and T. Suemasu, Thin Solid Films, 626, 190 (2017). doi: https://doi.org/10.1016/j.tsf.2017.02.046
  25. D. W. Lee, M. F. Bhopal, and S. H. Lee, AIP Adv., 8, 065308 (2018). doi: https://doi.org/10.1063/1.5026990
  26. J. Schneider, A. Sarikov, J. Klein, M. Muske, I. Sieber, T. Quinn, H. S. Reehal, S. Gall, and W. Fuhs, J. Cryst. Growth, 287, 423 (2006). doi: https://doi.org/10.1016/j.jcrysgro.2005.11.057
  27. K. Toko, R. Numata, N. Saitoh, N. Yoshizawa, N. Usami, and T. Suemasu, J. Appl. Phys., 115, 094301 (2014). doi: https://doi.org/10.1063/1.4867218
  28. M. Kurosawa, K. Toko, N. Kawabata, T. Sadoh, and M. Miyao, Solid-State Electron., 60, 7 (2011). doi: https://doi.org/10.1016/j.sse.2011.01.033
  29. R. Numata, K. Toko, N. Saitoh, N. Yoshizawa, N. Usami, and T. Suemasu, Cryst. Growth Des., 13, 1767 (2013). doi: https://doi.org/10.1021/cg4000878
  30. O. Tuzun, A. Slaoui, I. Gordon, A. Focsa, D. Ballutaud, G. Beaucarne, and J. Poortmans, Thin Solid Films, 516, 6892 (2008). doi: https://doi.org/10.1016/j.tsf.2007.12.104
  31. O. Tuzun, J. M. Auger, I. Gordon, A. Focsa, P. C. Montgomery, C. Maurice, A. Slaoui, G. Beaucarne, and J. Poortmans, Thin Solid Films, 516, 6882 (2008). doi: https://doi.org/10.1016/j.tsf.2007.12.105
  32. P. Prathap, O. Tuzun, D. Madi, and A. Slaoui, Sol. Energy Mater. Sol. Cells, 95, S44 (2011). doi: https://doi.org/10.1016/j.solmat.2010.11.035
  33. S. Gall, J. Schneider, M. Muske, I. Sieber, O. Nast, and W. Fuhs, Proc. PV in Europe - From PV Technology to Energy Solutions (Rome, Italy, 2002), p. 87. [ISBN: 8-8900971-3-2]
  34. H. Kim, D. Kim, G. Lee, D. Kim, and S. Lee, Sol. Energy Mater. Sol. Cells, 74, 323 (2002). doi: https://doi.org/10.1016/S0927-0248(02)00091-0
  35. J. Schneider, J. Klein, M. Muske, A. Schoepke, S. Gall, and W. Fuhs, Proc. Third World Conference on Photovoltaic Energy Conversion (Osaka, Japan, 2003) p. 106. [ISBN: 4-9901816-0-3]
  36. K. Toko, M. Nakata, A. Okada, M. Sasase, N. Usami, and T. Suemasu, Int. J. Photoenergy, 2015, 790242 (2015). doi: https://doi.org/10.1155/2015/790242
  37. I. M. Hoiaas, D. C. Kim, and H. Weman, Appl. Phys. Lett., 108, 161906 (2016). doi: https://doi.org/10.1063/1.4947101
  38. A. M. Morales and C. M. Lieber, Science, 279, 208 (1998). doi: https://doi.org/10.1126/science.279.5348.208
  39. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett., 83, 2934 (2003). doi: https://doi.org/10.1063/1.1616981
  40. J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, Science, 287, 1471 (2000). doi: https://doi.org/10.1126/science.287.5457.1471
  41. Y. Cui and C. M. Lieber, Science, 291, 851 (2001). doi: https://doi.org/10.1126/science.291.5505.851
  42. R. Juhasz, N. Elfstrom, and J. Linnros, Nano Lett., 5, 275 (2005). doi: https://doi.org/10.1021/nl0481573
  43. C. E. Kendrick and J. M. Redwing, J. Cryst. Growth, 337, 1 (2011). doi: https://doi.org/10.1016/j.jcrysgro.2011.09.049
  44. C. Kendrick, C. Bomberger, N. Dawley, J. Georgiev, H. Shen, and J. M. Redwing, Cryst. Res. Technol., 48, 658 (2013). doi: https://doi.org/10.1002/crat.201300260
  45. M. Kurosawa, N. Kawabata, T. Sadoh, and M. Miyao, Appl. Phys. Lett., 95, 132103 (2009). doi: https://doi.org/10.1063/1.3241076
  46. J. Chen, J. Suwardy, T. Subramani, W. Jevasuwan, T. Takei, K. Toko, T. Suemasu, and N. Fukata, CrystEngComm, 19, 2305 (2017). doi: https://doi.org/10.1039/C6CE02328B
  47. D. Wu, X. H. Tang, A. Olivier, and X. Q. Li, Mater. Res. Express, 2, 045002 (2015). doi: http://doi.org/10.1088/2053-1591/2/4/045002
  48. D. Ren, I. M. Hoiaas, J. F. Reinertsen, D. L. Dheeraj, A. M. Munshi, D. C. Kim, H. Weman, and B. O. Fimland, J. Vac. Sci. Technol. B, 34, 02L117 (2016). doi: http://doi.org/10.1116/1.4943926
  49. S. J. Chae, Y. H. Kim, T. H. Seo, D. L. Duong, S. M. Lee, M. H. Park, E. S. Kim, J. J. Bae, S. Y. Lee, H. Jeong, E. K. Suh, C. W. Yang, M. S. Jeong, and Y. H. Lee, RSC Adv., 5, 1343 (2015). doi: https://doi.org/10.1039/C4RA12557F
  50. J. H. Choi, H. Y. Ahn, Y. S. Lee, K. Park, T. H. Kim, K. S. Cho, C. W. Baik, S. I. Kim, H. Yoo, E. H. Lee, B. L. Choi, S. D. Kim, Y. W. Kim, M. Kim, and S. Hwang, J. Mater. Chem., 22, 22942 (2012). doi: https://doi.org/10.1039/C2JM34405J
  51. M. F. Hainey Jr, Z. Y. Al Balushi, K. Wang, N. C. Martin, A. Bansal, M. Chubarov, and J. M. Redwing, Phys. Status Solidi RRL, 12, 1700392 (2018). doi: https://doi.org/10.1002/pssr.201700392
  52. K. Toko, K. Kusano, M. Nakata, and T. Suemasu, J. Appl. Phys., 122, 155305 (2017). doi: https://doi.org/10.1063/1.4996373