Acknowledgement
The authors received no financial support for the research, authorship, and publication of this article.
References
- P. Crump, G. Erbert, H. Wenzel, C. Frevert, C. M. Schultz, K.-H. Hasler, R. Staske, B. Sumpf, A. Maassdorf, F. Bugge, S. Knigge, and G. Trankle, "Efficient high-power laser diodes," IEEE J. Sel. Top. Quantum Electron. 19, 1501211-1501211 (2013). https://doi.org/10.1109/JSTQE.2013.2239961
- D. Xu, Z. Guo, T. Zhang, K. Song, W. Guo, B. Wang, R. Xu, and X. Chen, "600 W high brightness diode laser pumping source," Proc. SPIE 10086, 1008603 (2017).
- M. Kelemen, J. Gilly, P. Friedmann, S. Hilzensauer, L. Ogrodowski, H. Kissel, and J. Biesenbach, "Diode lasers optimized in brightness for fiber laser pumping," Proc. SPIE 10514, 10514F (2018).
- T. H. Kim, N.-J. Kim, and J.-I. Youn, "Evaluation of wavelength-dependent hair growth effects on low-level laser therapy: An experimental animal study," Lasers Med. Sci. 30, 1703-1709 (2015). https://doi.org/10.1007/s10103-015-1775-9
- V. Knappe, F. Frank, and E. Rohde, "Principles of lasers and biophotonic effects," Photomed. Laser Surg. 22, 411-417 (2004). https://doi.org/10.1089/pho.2004.22.411
- H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, "2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode," Opt. Express 23, 20743-20748 (2015). https://doi.org/10.1364/OE.23.020743
- H. Kawaguchi, "Bistable laser diodes and their application: State of the art," IEEE J. Sel. Top. Quantum Electron. 3, 1254-1270 (1997). https://doi.org/10.1109/2944.658606
- T. Zheng, G. Shen, Z. Li, L. Yang, H. Zhang, E. Wu, and G. Wu, "Frequency-multiplexing photon-counting multi-beam LiDAR," Photonics Res. 7, 1381-1385 (2019). https://doi.org/10.1364/PRJ.7.001381
- I. Vornicu, J. M. Lopez-Martinez, F. N. Bandi, R. C. Galan, and A. Rodriguez-Vazquez, "Design of high-efficiency SPADs for LiDAR applications in 110 nm CIS technology," IEEE Sens. J. 21, 4776-4785 (2021). https://doi.org/10.1109/JSEN.2020.3032106
- J.-E Joo, M.-J. Lee, and S. M. Park, "A CMOS fully differential optoelectronic receiver for short-range LiDAR sensors," IEEE Sens. J. 23, 4930-4939 (2023). https://doi.org/10.1109/JSEN.2023.3236678
- S. I. Bae, S. Lee, J.-M. Kwon, H.-K. Kim, K.-W. Jang, D. Lee, and K.-H. Jeong, "Machine-learned light-field camera that reads facial expression from high-contrast and illumination invariant 3D facial image," Adv. Intell. Syst. 4, 2100182 (2021).
- J. Cheng, X. Sun, S. Zhou, X. Pu, N. Xu, Y. Xu, and W. Liu, "Ultra-compact structured light projector with all-dielectric metalenses for 3D sensing," AIP Adv. 9, 105016 (2019).
- Y. Rivenson, Y. Zhang, H. Gunaydin, D. Teng, and A. Ozcan, "Phase recovery and holographic image reconstruction using deep learning in neural networks," Light Sci. Appl. 7, 17141 (2017).
- B. Yao, W. Li, W. Pan, Z. Yang, D. Chen, J. Li, and J. Qu, "Image reconstruction with a deep convolutional neural network in high-density super-resolution microscopy," Opt. Express 28, 15432-15446 (2020). https://doi.org/10.1364/OE.392358
- T. Koike-Akino, Y. Wang, D. S. Millar, K. Kojima, and K. Parsons, "Neural turbo equalization: Deep learning for fiber-optic nonlinearity compensation," J. Light. Technol. 38, 3059-3066 (2020).
- B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, "Multimode optical fiber transmission with a deep learning network," Light Sci. Appl. 7, 69 (2018).
- X. Han, Z. Fan, Z. Liu, C. Li, and L. J. Guo, "Inverse design of metasurface optical filters using deep neural network with high degrees of freedom," InfoMat 3, 432-442 (2020).
- T. Zhao, W. Ji, P. Liu, F. Gao, C. Li, Y. Wang, and W. Huang, "Highly efficient inverse design of semiconductor optical amplifiers based on neural network improved particle swarm optimization algorithm," IEEE Photonics J. 15, 8500409 (2023).
- Z. Ma, P. Feng, and Y. Li, "Inverse design of semiconductor laser parameters based on deep learning and particle swarm optimization method," Proc. SPIE 11209, 112092X (2019).
- Z. Ma and Y. Li, "Parameter extraction and inverse design of semiconductor lasers based on the deep learning and particle swarm optimization method," Opt. Express 28, 21971-21981 (2020). https://doi.org/10.1364/OE.389474
- J. R. Meyer, C. L. Canedy, M. Kim, C. S. Kim, C. D. Merritt, W. W. Bewley, and I. Vurgaftman, "Comparison of Auger coefficients in type I and type II quantum well midwave infrared lasers," IEEE J. Quantum Electron. 57, 2500110 (2021).
- J. Piprek, P. Abraham, and J. E. Bowers, "Self-consistent analysis of high-temperature effects on strained-layer multiquantum-well InGaAsP-InP lasers," IEEE J. Quantum Electron. 36, 366-374 (2000). https://doi.org/10.1109/3.825885
- J. Piprek, P. Abraham, and J. E. Bowers, "Cavity length effects on internal loss and quantum efficiency of multiquantumwell lasers," IEEE J. Sel. Top. Quantum Electron 5, 643-647 (1999). https://doi.org/10.1109/2944.788430
- J. Piprek, J. K. White, and A. J. SpringThorpe, "What limits the maximum output power of long-wavelength AlGaInAs/ InP laser diodes?," IEEE J. Quantum Electron. 38, 1253-1259 (2002). https://doi.org/10.1109/JQE.2002.802441