DOI QR코드

DOI QR Code

An Ultra-thin IR Cut-off Filter Based on Nanostructures

나노구조 기반 초박형 적외선 차단 필터

  • Hyundo Yang (Department of System Semiconductor Engineering, Cheongju University) ;
  • Jong-Kwon Lee (Department of System Semiconductor Engineering, Cheongju University)
  • 양현도 (청주대학교 시스템반도체공학과) ;
  • 이종권 (청주대학교 시스템반도체공학과)
  • Received : 2024.01.08
  • Accepted : 2024.01.21
  • Published : 2024.02.25

Abstract

We propose a hyperbolic metastructure based on a nanopatterned metal (Ag)-dielectric (PDMS) multilayer and report on its performance in an infrared (IR) cut-off filter for imaging devices. By optimizing the size of the square-shaped Ag nanopattern and the thickness of PDMS surrounding the Ag nanopattern, the proposed IR cut-off filter blocks 99% of light in the 0.70-1.01 ㎛ wavelength band while maintaining a high transmittance of over 94% in the visible region. Here, the cut-off wavelength band starts at a region above the epsilon-near-zero wavelength of the hyperbolic metastructure and ends at the point where plasmonic absorption appears strongly. It is observed that transmittance in the wavelength region longer than the IR cut-off band increases again due to plasmonic coupling among horizontally adjacent Ag nanopatterns. This metastructure can improve the performance of IR-blocking filters as well as allow it to be manufactured ultra-thin, which is applicable to various planar optical elements and integrated optical components.

본 연구에서는 나노패턴된 금속(Ag)-유전체(PDMS) 다층 기반의 쌍곡선 메타구조를 제안하고 영상 소자용 적외선 차단 필터의 성능에 대해 보고한다. 사각형 모양의 Ag 나노 패턴의 크기와 Ag 나노 패턴을 둘러싼 PDMS의 두께를 최적화함으로써, 제안된 IR 차단 필터가 0.70-1.01 ㎛ 파장 대역의 빛을 99% 차단하면서도 가시광 영역에서 94% 이상의 높은 투과율을 나타냄을 보였다. 차단 파장 대역은 쌍곡선 메타구조의 epsilon-near-zero 파장보다 긴 파장 영역에서 시작하여 Ag 나노 패턴에 의한 플라즈모닉 흡수가 강한 지점에서 끝나게 된다. 근적외선 차단 대역보다 긴 파장 영역에서는 수평으로 인접한 Ag 나노패턴들 사이의 플라즈모닉 커플링 효과로 다시 투과도가 증가됨을 알 수 있다. 이러한 메타구조체는 적외선 차단 필터의 성능을 향상시킬 수 있을 뿐만 아니라 공정 단순화를 통해 초박형 제조가 가능하여, 다양한 평면 광학 및 집적광학 부품들에 적용될 수 있다.

Keywords

Acknowledgement

이 논문은 (2022. 3. 1-2024. 2. 29)학년도에 청주대학교 산업과학연구소가 지원한 학술연구조성비(특별연구과제)에 의해 연구되었음.

References

  1. K. Mangold, J. A. Shaw, and M. Vollmer, "The physics of near-infrared photography," Eur. J. Phys. 34, S51 (2013).
  2. S. Reichel and F.-T. Lentes, "Blue glass lens elements used as IR cut filter in a camera design and the impact of inner quality onto lens performance," Proc. SPIE 8550, 85500O (2012).
  3. J.-K. Lee, B. O. Kim, J. Park, J. B. Kim, I.-S. Kang, G. Sim, J. H. Park, and H.-I. Jang, "A bilayer Al nanowire-grid polarizer integrated with an IR-cut filter," Opt. Mater. 98, 109409 (2019).
  4. Q. Zhang, X. Li, J. Shen, G. Wu, J. Wang, and L. Chen, "ZrO2 thin films and ZrO2/SiO2 optical reflection filters deposited by sol-gel method," Mater. Lett. 45, 311-314 (2000). https://doi.org/10.1016/S0167-577X(00)00124-5
  5. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, "Hyperbolic metamaterials," Nat. Photnoics 7, 948-957 (2013). https://doi.org/10.1038/nphoton.2013.243
  6. Z. Guo, H. Jiang, and H. Chen, "Hyperbolic metamaterials: From dispersion manipulation to applications," J. Appl. Phys. 127, 071101 (2020).
  7. T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, "All-angle negative refraction and active flat lensing of ultraviolet light," Nature 497, 470-474 (2013). https://doi.org/10.1038/nature12158
  8. C. Sheng, H. Liu, H. Chen, and S. Zhu, "Definite photon deflections of topological defects in metasurfaces and symmetry-breaking phase transitions with material loss," Nat. Commun. 9, 4271 (2018).
  9. S. H. Sedighy, C. Guclu, S. Campione, M. M. Amirhosseini, and F. Capolino, "Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution," IEEE Trans. Microw. Theory Tech. 61, 4110-4117 (2013). https://doi.org/10.1109/TMTT.2013.2288697
  10. H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, "Experimental verification of loss-induced field enhancement and collimation in anisotropic µ-near-zero metamaterials," Phys. Rev. B 91, 045302 (2015).
  11. M. Memarian and G. V. Eleftheriades, "Light concentration using hetero-junctions of anisotropic low permittivity metamaterials," Light Sci. Appl. 2, e114 (2013).
  12. Y. T. Yang, Z. Y. Jia, T. Xu, J. Luo, Y. Lai, and Z. H. Hang, "Beam splitting and unidirectional cloaking using anisotropic zero-index photonic crystals," Appl. Phys. Lett. 114, 161905 (2019).
  13. C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, "Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode," Sci. Rep. 6, 21431 (2016).
  14. N. Maccaferr, Y. Zhao, T. Isoniemi, A. Parracino, G. Strangi, and F. D. Angelis, "Hyperbolic meta-antennas enable full control of scattering and absorption of light," Nano Lett. 19, 1851-1859 (2019). https://doi.org/10.1021/acs.nanolett.8b04841
  15. R. Maas, J. Parsons, N. Engheta, and A. Polman, "Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths," Nat. Photonics 7, 907-912 (2013). https://doi.org/10.1038/nphoton.2013.256
  16. P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, "Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions," Nat. Commun. 7, 11809 (2016).
  17. M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, and J. Rho, "Visibly transparent radiative cooler under direct sunlight," Adv. Opt. Mater. 9, 2002226 (2021).
  18. Y. Jin, Y. Jeong, and K. Yu, "Infrared-reflective transparent hyperbolic metamaterials for use in radiative cooling windows," Adv. Funct. Mater. 33, 2207940 (2023).
  19. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370
  20. E. D. Palik, Handbook of Optical Constants of Solids, E. D. Palik, Ed. (Academic Press, USA, 1985).