DOI QR코드

DOI QR Code

A study on methods for population prediction involving future uncertainty

미래 불확실성을 내포하는 인구 예측 방법 연구

  • Jinho Oh (Department of Mathematical Sciences, Hanbat National University)
  • 오진호 (국립한밭대학교 수리과학과)
  • Received : 2024.01.29
  • Accepted : 2024.04.19
  • Published : 2024.12.31

Abstract

Future uncertainty means that future results or phenomena cannot be accurately predicted. Since deterministic population projection based on such future uncertainty has clear limitations, so many advanced population research institutes and international organizations have emphasized the importance of probabilistic population prediction. It also presents probabilistic predictions in the research areas of climate, process, precipitation, and weather. However, the KOSTAT and various organizations in korea are only in scenario-based deterministic population projection, and only the need for probabilistic population prediction is raised. Therefore, this paper points out that when future uncertainties exist, the limitations and problems of decisive population projection should be examined, and the future population should be examined with probabilistic population prediction, and the results are presented. As a result of the analysis, in terms of the probabilistic confidence interval (5th quartile, 95th quartile), 5,106 to 51.2 million people in 2025, 5,053 to 5,082 million in 2030, 4,829 to 4,8 million in 2040, 4,425 to 45,5 million in 2050, and the last forecast, in 2062, the number below 40 million, is expected to be 37.33 to 33.3 million, and the rapid population deceleration over 33 years was the biggest factor rapidly decline in the fertility rate.

미래 불확실성은 미래에 나타날 결과나 현상에 대해 정확히 예측할 수 없음을 의미한다. 이런 미래 불확실성에 따른 결정론적 인구추계는 한계점이 분명하여 여러 선진 인구연구소나 국제기구에서는 확률론적 인구추계의 중요성을 거듭 강조해오고 있다. 또한 기후, 공정, 강수량, 기상 분야에서 확률적 예측을 제시하고 있다. 하지만 우리나라 통계청과 각종 기관에서는 시나리오 기반 결정론적 인구추계에 머물고 있고, 확률론적 인구예측의 필요성만 제기하고 있는 실정이다. 이에 본 논문은 미래 불확실성이 존재할 때 결정적 인구추계의 한계점과 문제점을 살펴보고, 미래 인구를 확률적 인구예측으로 살펴보아야하는 점을 지적하고 이에 대한 결과를 제시한다. 분석결과 확률적 신뢰구간(5th 분위수, 95th분위수) 관점에서 2025년은 5,106~5,120만 명, 2030년 5,053~5,082만 명, 2040년 4,829~4,885만 명, 2050년 4,425~4,505만 명, 그리고 예측 마지막 시점인 2062년은 4천만 명 아래 수준인 3,733~3,830만 명으로 예상되며, 33개년 동안 빠른 인구 감소는 지속적인 출산율 하락이 가장 큰 요인으로 나타났다.

Keywords

References

  1. Alho JM and Spencer BD (1985). Uncertain population forecasting, Journal of the American Statistical Association, 80, 306-314.
  2. Alho JM (1997). Scenario, uncertainty and conditional forecasts of the world population, Journal of Royal Statistical Society, 160, 71-85.
  3. Alho JM (2005). Remarks on the Use of Probabilities in Demography and Forecasting. In Bengtsson T and Keilman N (Eds), Old and New Perspectives on Mortality Forecasting (pp. 113-122), Springer Open, Switzerland.
  4. Alder M and De Beer J (2004). Assumptions on fertility in stochastic population forecasts, International Statistical Review, 72, 65-79.
  5. Alkema L, Gerpand P, Raftery A, and Wilmoth J (2015). The united nations probabilistic population projections: An introduction to demographic forecasting with uncertainty, Foresight(Colch), 37, 19-24.
  6. Box GEP and Cox DR (1964). An analysis of transformations, Journal of the Royal Statistical Society, Series B, 26, 211-252.
  7. Cahandola T, Coleman DA, and Horn RW (1999). Recent European fertility patterns: Fitting curves to 'distorted distributions, Population Studies, 53, 317-329.
  8. Dator JA (2002). Advancing Futures: Futures Studies in Higher Education, Praeger Press, London.
  9. Dator JA (2009). Alternative futures at the Manoa school, Journal of Futures Studies, 14, 1-18.
  10. De Beer J (2000). Dealing with uncertainty in population forecasting, Statistics Netherlands, Available from: www.cbs.nl/nr/rdonlyres/7dc466f9-fe4c-48dc-be90-30216b697548/0/dealingwithuncertainty.pdf
  11. Dunstan D and Ball C (2016). Demographic projections: User and producer experiences of adoption a stochastic approach, Journal of Official Statistics, 32, 947-962.
  12. Enders CK (2010). Applied Missing Data Analysis, The Guilford Press, New York, NY.
  13. Gerland P, Raftery A, Sevcikova H et al. (2014), World population stabilization unlikely this century, Science, 346, 234-237.
  14. Hadwiger H (1940). "Eine analytische reprodutions-funktion fur biologische gesamtheiten", Skandinavisk Aktuarietidskrift, 23, 101-113.
  15. Hoem JM, D. Madsen, J.L.Nielsen, E. Ohlsen, H.O Hansen, and B. Rennermalm. (1981). Experiments in modelling recent danish fertility curves, Demography, 18, 231-244.
  16. Horiuchi S and Wilmoth JR (1995). Aging of Mortality Decline, Rockefeller University, New York.
  17. Hyndman RJ and Ullah S (2007). Robust forecasting of mortality and fertility rates: A functional data approach, Computational Statistics & Data Analysis, 51, 4942-4956.
  18. Hyndman RJ and Booth H (2008). Stochastic population forecasts using functional data models for mortality, fertility and migration, International Journal of forecasting, 24, 323-342.
  19. Hyndman R., J., Booth H., and Yasmeen F.,(2013). Coherent mortality forecasting: The product-ration method with functional time series models, Demography, 50, 261-283.
  20. Kaneko R (2003). Elaboration of the Coale-McNeil nuptiality model as the generalized log gamma distribution: A new identity and empirical enhancements, Demographic Research, 9, 223-262.
  21. Keilman N (2002). Why population forecasts should be probablistic - illustrated by the case of norway, Demographic Research, 6, 409-454.
  22. Keilman N (2005). Erroneous Population Forecasts. In Bengtsson T and Keilman N (Eds), Old and New Perspectives on Mortality Forecasting (pp. 95-111), Springer Open, Switzerland.
  23. Keyfitz N (1981). The limits of population forecasting, Population and Development Review, 7, 579-593.
  24. Kim SY and Oh JH (2017). A study comparison of mortality projection using parametric and non-parametric model, The Korean Jonrnal of Applied Statistics, 30, 701-717.
  25. KOSTAT (2016). Population projection 2015~2065, Available from: https://kostat.go.kr/board.es?mid=a10301010000&&bid=207&act=view&list_no=357935
  26. KOSTAT (2019). The Special population projection 2017~2067, Available from: https://kostat.go.kr/board.es?mid=a10301010000&&bid=207&act=view&list_no=373873
  27. KOSTAT (2021). Population projection 2020~2070, Available from: https://kostat.go.kr/board.es?mid=a10301010000&&bid=207&act=view&list_no=415453
  28. KOSTAT (2023). Population projection 2022~2072, Available from: https://kostat.go.kr/board.es?mid=a10301010000&bid=207&act=view&list_no=428476
  29. Lee RD and Carter LR (1992). Modeling and forecasting U.S. mortality, Journal of the American Statistical Association, 87, 659-671.
  30. Lee RD and Tuljapurkar S (1994). Stochastic population forecasts for the united states: Beyond high, medium, and low, Journal of the American Statistical Association, 89, 1175-1189.
  31. Lee RD (1998). Probabilistic approaches to population forecasting, Population and Development Review, 24, 156-190.
  32. Lee RD (2004). Quantifying our ignorance: Stochastic forecasts of population and public budgets, Population and Development Review, 30, 153-175.
  33. Lesile PH (1945). The use of matrices in certain population mathematics, Biometrika, 33, 183-212.
  34. Lesile PH (1948). Some further notes on the use of matrices in population mathematics, Biometrika, 35, 213-245.
  35. Li N and Gerland P (2011). Modifying the Lee-Carter Method to Project Mortality Changes up to 2100. In he Population Association of America 2011 Annual meeting-Washington, DC, Session 125, formal Demography I: Mathematical Models and Methods, Washington, DC.
  36. Li N, Lee R, and Gerland P (2013). Extending the Lee-Cater method to model the rotation of age patterns of mortality decline for long-term projections, Demography, 50, 2037-2051.
  37. Lutz W and Goldstein JR (2004). Introduction: How to deal with uncertainty in population forecasting ?, International Statistical Review, 72, 1-4.
  38. Lutz, W., W. Butz, and S. KC. (2014). World Population and Human Capital in the 21st Century, Oxford University Press, Oxford, United Kingdom.
  39. MDIPR (2006). Stochastic forecast of the population of Poland, 2005-2050, MPIDR WORKING PAPER WP 2006-026 AUGUST 2006 (REVISED NOVEMBER 2007).
  40. MDIPR (2007). Aging of a giant: A stochastic population forecast for China, 2001-2050, MPIDR WORKING PAPER WP 2007-032.
  41. Moguerza JM, Olivares A, Kostaki A, and Psarakis S (2010). Comparing Smoothing Techniques on Fertility data. In 9th Mexican International Conference on Artificial Intelligence, MICAI 2010, Pachuca, Mexico, November 8-13, 2010, Special Sessions, Pachuca, Mexico.
  42. Oh JH (2020). Stochastic population projections on an uncertainty for the future Korea, The Korean Journal of Applied Statistics, 33, 185-201.
  43. Pagan A and Ullah A (1999). Nonparametric Econometrics, Cambridge University Press, Cambridge, United Kingdom.
  44. Park YS, Kim MR, and Kim SY (2013). Probabilistic fertility models and the future population structure of Korea, The Korean Association for Survey Research, 14, 49-78.
  45. Peristera P and A Kostaki (2007). "Modeling fertility in modern populations", Demographic Research, 16, 141-194.
  46. Ramsay JO and Silverman BW (2005). Functional Data Analysis (2nd ed), Springer, New York.
  47. Raftery AE, Li N, Chunn JL, Sevcikova H, Gerland P, and Heilig GK (2012). Bayesian probabilistic population projection for all countries, Proceedings of the National Academy of Sciences of the United States of America, 109, 13915--13921.
  48. Raftery A, J. Chunn, P. Gerland, and H. Sevcikova. (2013). Bayesian probabilistic projections of life expectancy for all countries, Demography, 50, 777--801.
  49. Stoto M (1983). The accuracy of population projections, Journal of the American Statistical Association, 78, 13--20.
  50. Statistics Canada (2015). Population Projections for Canada(2013 to 2063), Provinces and Territories (2013 to 2038): Technical Report on Methodology and Assumptions.
  51. UN (2019). World Population Prospects 2019, Available from: https://www.un.org/development/desa/pd/news/world-population-prospects-2019-0
  52. UN (2021). World Population Prospects 2021, Available from: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/undesa_pd_2021_egm_wpp2022_session_i_patrick_gerland.pdf
  53. UN (2022). World Population Prospects 2022, Available from: https://digitallibrary.un.org/record/3989515?v=pdf
  54. Unicef (2017). Level & Trends in Child Mortality, Available from: https://data.unicef.org/resources/levels-trends-child-mortality-2017/
  55. VID (2016). 40 years of the Vienna Institute of Demography 1975-2015, Available from: https://www.oeaw.ac.at/fileadmin/subsites/Institute/VID/PDF/Publications/diverse_Publications/VID_40years_Web_Final.pdf
  56. Woo HB (2010). Stochastic demographic and population forecasting, Korea Journal of Population Studies, 33, 161-189.