DOI QR코드

DOI QR Code

Optimizing Digital Healthcare Distribution: An Integrated Model of Channel Efficiency and Technology Acceptance

  • Quoc Dung NGO (Faculty of Planning and Development, National Economics University) ;
  • Tuan Vinh TRAN (Faculty of Planning and Development, National Economics University) ;
  • Duc Anh HOANG (Faculty of Investment, National Economics University)
  • 투고 : 2024.11.06
  • 심사 : 2024.12.05
  • 발행 : 2024.12.30

초록

Purpose: Purpose: This study examines the optimization of healthcare service distribution through digital channel adoption by integrating anticipatory governance perspectives with distribution channel frameworks, emphasizing the role of digital service delivery networks. Research design, data and methodology: The research employs a mixed-methods approach incorporating qualitative expert interviews and quantitative survey data from 295 users across diverse distribution regions of Vietnam. The conceptual framework analyzes the relationships between distribution service quality, security protocols, perceived distribution benefits, and future perception through Partial Least Squares Structural Equation Modeling, focusing on channel efficiency and service accessibility. Results: The findings reveal that service quality and security measures in digital channels significantly influence attitudes toward distribution systems, while traditional usability factors show minimal impact. The study introduces future perception as a novel construct in distribution science, demonstrating its significant effect on adoption intentions. Multi-group analysis reveals notable variations in distribution effectiveness across geographical regions and demographic segments, with distinct patterns between urban and rural areas. Conclusions: The research advances distribution theory by demonstrating how anticipatory elements and demographic variations influence digital service delivery optimization. These insights provide strategic implications for developing efficient, segment-specific digital distribution networks in healthcare service delivery.

키워드

과제정보

This research is funded by National Economics University, Hanoi, Vietnam

참고문헌

  1. Abdullah, M. Y., Almazayen, F. M., Hwaifr, M. H., Alkhatir, W. S., Albar, A. M., Abdullah, N. A., Almodrhim, F. F., Akmalov, S., Alqurayn, M. N., Al Muzarra, Q. I., & Alatawi, W. H. (2023). Effect of COVID-19 on chronic care management in primary health settings. International Journal of Community Medicine and Public Health, 11(1), 516-520. https://doi.org/10.18203/2394-6040.ijcmph20233947 
  2. AlQudah, A., Al-Emran, M., & Shaalan, K. (2021). Technology acceptance in healthcare: A systematic review. Applied Sciences, 11(22), 10537. https://doi.org/10.3390/app112210537 
  3. Andriopoulou, F., Birkos, K., Mantas, J., & Lymberopoulos, D. (2018). Software-defined networking for ubiquitous healthcare service delivery. Advances in Experimental Medicine and Biology, 12(2), 95-104. https://doi.org/10.1007/978-3-030-05195-2_10 
  4. Bailey, J. E., Gurgol, C., Pan, E., Njie, S., Emmett, S., Gatwood, J., Gauthier, L., Rosas, L. G., Kearney, S. M., Robler, S. K., Lawrence, R. H., Margolis, K. L., Osunkwo, I., Wilfley, D., & Shah, V. O. (2021). Early patient-centered outcomes research experience with the use of telehealth to address disparities: Scoping review. Journal of Medical Internet Research, 23(12), e28503. https://doi.org/10.2196/28503 
  5. Bond, A. (2023). Margin notes from the covid-19 pandemic for the future of healthcare innovation. Healthcare Management Forum, 36(6), 393-398. https://doi.org/10.1177/08404704231185487 
  6. Bustamante, A. V., Martinez, L. E., Jalal, S., Benitez Santos, N., Felix Beltran, L., Rich, J., & Anaya, Y. B.-M. (2023). Racial and ethnic disparities in telehealth use before and after California's stay-at-home order. Frontiersin Public Health, 11, 1222203. https://doi.org/10.3389/fpubh.2023.1222203 
  7. Catapan S de C., Haydon H. M., Hickman I.J., et al . (2023). Trust and confidence in using telehealth in people with chronic kidney disease: A cross-sectional study. Journal of Telemedicine and Telecare, 29(10), 16S-23S. https://doi.org/10.1177/1357633x231202275 
  8. Chen, N., Liu, P., & Lv, P. (2022). Assessing elderly user preference for telehealth solutions in China: Exploratory quantitative study. JMIR mHealth and uHealth, 10(1), e27272. https://doi.org/10.2196/27272 
  9. Dhaliwal, J., Hall, T., Larue, J., Maynard, S., Pierre, P., & Bransby, K. (2021). Expansion of telehealth in primary care during the COVID-19 pandemic: Benefits and barriers. Journal of the American Association of Nurse Practitioners, 34(2), 224-229. https://doi.org/10.1097/jxx.0000000000000626 
  10. Duffy, L., Evans, R., Bennett, V., Hady, J., & Palaniappan, P. (2023). Therapeutic relational connection in telehealth: Concept analysis. Journal of Medical Internet Research, 25, e43303. https://doi.org/10.2196/43303 
  11. Filbay, S., Bennell, K., Morello, R., Smith, L., Hinman, R., & Lawford, B. (2022). Exploring experiences with telehealth-delivered allied healthcare services for people with permanent and significant disabilities funded through a national insurance scheme: A qualitative study. BMJ Open, 12(9), e065600. https://doi.org/10.1136/bmjopen-2022-065600 
  12. Gately, M., Quach, E., Shirk, S., & Trudeau, S. (2022). Understanding variation in adoption of video telehealth and implications for health care systems. Medical Research Archives, 10(5). https://doi.org/10.18103/mra.v10i5.2751 
  13. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2021). Multivariate data analysis (8th ed.). Cengage Learning.
  14. Harris, M., & Rogers, W. (2021). Developing a healthcare technology acceptance model (H-TAM) for older adults with hypertension. Ageing and Society, 43(4), 814-834. https://doi.org/10.1017/s0144686x21001069 
  15. Jiang, Y., Sun, P., Chen, Z., Guo, J., Wang, S., Liu, F., & Li, J. (2022). Patients' and healthcare providers' perceptions and experiences of telehealth use in chronic disease management: A qualitative study. BMC Geriatrics, 22(1), 1-14. https://doi.org/10.1186/s12877-021-02702-z 
  16. Jungwirth, D., & Haluza, D. (2017). Information and communication technology and the future of healthcare: Results of a multi-scenario Delphi survey. Health Informatics Journal, 25(1), 161-173. https://doi.org/10.1177/1460458217704256 
  17. Leonard, C., Liu, W., Holstein, A., Alliance, S., Nunnery, M., Rohs, C., & Winchester, D. (2023). Informing use of telehealth for managing chronic conditions: Mixed-methods evaluation of Telehealth Use to Manage Heart Failure During COVID-19. Journal of the American Heart Association, 12(4), e027362. https://doi.org/10.1161/jaha.122.027362 
  18. Liu, W., Xia, Y., & Hou, J. (2019). Health expenditure efficiency in rural China using the super-SBM model and the Malmquist productivity index. International Journal for Equity in Health, 18(1), 1-12. https://doi.org/10.1186/s12939-019-1003-5 
  19. Martin, R., Mandrusiak, A., Lang, R., Forbes, R., & Russell, T. (2022). A telehealth curriculum: A pre-post study of physiotherapy students' perceived knowledge. Focus on Health Professional Education, 23(3), 56-72. https://doi.org/10.11157/fohpe.v23i3.595 
  20. Milosevic, Z. (2020). Enacting policies in digital health: A case for smart legal contracts and distributed ledgers? The Knowledge Engineering Review, 35, e4. https://doi.org/10.1017/s0269888920000089 
  21. Muller, S., Wehner, D., Konzag, H., Vesterby, M., & Hoybye, M. (2021). The paradox of project success despite lack of the "my pathway" telehealth platform usage. Journal of Health Informatics, 27(1), 1-12. https://doi.org/10.1177/1460458220976734 
  22. Orrange, S., Patel, A., Mack, W., & Cassetta, J. (2021). Patient satisfaction and trust in telemedicine during the COVID-19 pandemic: Retrospective observational study. JMIR Human Factors, 8(2), e28589. https://doi.org/10.2196/28589 
  23. Papalamprakopoulou, Z., Ntagianta, E., Triantafyllou, V., & others. (2024). Telehealth to increase healthcare access: Perspectives of people who use drugs. Research Square. https://doi.org/10.21203/rs.3.rs-4518090/v1 
  24. Qi, X., Mei, G., Cuomo, S., & Xiao, L. (2020). A network-based method with privacy-preserving for identifying influential providers in large healthcare service systems. Future Generation Computer Systems, 109, 293-305. https://doi.org/10.1016/j.future.2020.04.004 
  25. Schretzlmaier, P., & Hecker, A. (2022). Extension of the unified theory of acceptance and use of technology 2 model for predicting mHealth acceptance using diabetes as an example: A cross-sectional validation study. BMJ Health & Care Informatics, 29(1), e100640. https://doi.org/10.1136/bmjhci-2022-100640 
  26. Sun, M., Ye, Y., Zhang, G., Shang, X., & Yang, X. (2023). Healthcare services efficiency and its intrinsic drivers in China: Based on the three-stage super-efficiency SBM model. BMC Health Services Research, 23(1), 1-15. https://doi.org/10.1186/s12913-023-09820-x 
  27. Takahashi, E., Schwamm, L., Adeoye, O., Alabi, O., Jahangir, E., Misra, S., & Still, C. (2022). An overview of telehealth in the management of cardiovascular disease: A scientific statement from the American Heart Association. Circulation, 146(25), e472-e486. https://doi.org/10.1161/cir.0000000000001107 
  28. Thompson, T. L., Robinson, J. D., & Brashers, D. E. (2022). Interpersonal communication and health care (2nd ed.). Oxford University Press. 
  29. Truong, M., Yeganeh, L., Cook, O., Wong, P., & Allen, J. (2022). Using telehealth consultations for healthcare provision to patients from non-indigenous racial/ethnic minorities: A systematic review. Journal of the American Medical Informatics Association, 29(5), 970-982. https://doi.org/10.1093/jamia/ocac015 
  30. Wei, X., Xie, H., Peng, X., & Prybutok, V. (2020). An investigation of the consumer's trusting mechanism in emerging healthcare technology. Industrial Management & Data Systems, 121(2), 290-311. https://doi.org/10.1108/imds-06-2020-0321 
  31. Wiest, I. C., Sicorello, M., Yesmembetov, K., Ebert, M. P., & Teufel, A. (2024). Usage behaviour and adoption criteria for mobile health solutions in patients with chronic diseases in gastroenterology. Visceral Medicine, 40(2), 61-74. https://doi.org/10.1159/000534191 
  32. Williams, H., Steinberg, S., Vingum, R., Leon, K., Cespedes, E., Berzin, R., & Hagg, H. (2023). Parsley health: Feasibility and acceptability of a large-scale holistic telehealth program for chronic disease care. Frontiers in Digital Health, 5, Article 1008574. https://doi.org/10.3389/fdgth.2023.1008574 
  33. Zhu, L., Jiang, X., & Cao, J. (2023). Factors affecting continuance intention in non-face-to-face telemedicine services: Trust typology and privacy concern perspectives. Healthcare, 11(3), 374. https://doi.org/10.3390/healthcare11030374