Acknowledgement
This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (Nos. 20191210301580 and 20192010107290).
References
- E. Administration, Annual energy review, 1990, DC WA.
- R. Tol, Sources of greenhouse gas emissions, Department of Economics, University of Sussex Business School. 2020.
- E.P. Monthly, 2015, US Energy Information Administration.
- S. H. Nengroo, M. A. Kamran, M. U. Ali, D.-H. Kim, M.-S. Kim, A. Hussain, and H. J. Kim, Dual battery storage system: An optimized strategy for the utilization of renewable photovoltaic energy in the United Kingdom, Electron 7 (2018), 177.
- S. Karjalainen and H. Ahvenniemi, Pleasure is the profit-the adoption of solar Pv systems by households in Finland, Renew Energy 133 (2019), 44-52. https://doi.org/10.1016/j.renene.2018.10.011
- B. H. Zaidi, D. M. S. Bhatti, and I. Ullah, Combinatorial auctions for energy storage sharing amongst the households, J. Energy Storage 19 (2018), 291-301. https://doi.org/10.1016/j.est.2018.08.010
- I. Wittenberg and E. Matthies, Solar policy and practice in Germany: How do residential households with solar panels use electricity? Energy Res. Soc. Sci. 21 (2016), 199-211. https://doi.org/10.1016/j.erss.2016.07.008
- H. A. Baer and M. Singer, The anthropology of climate change: An integrated critical perspective, Routledge, 2018.
- A. Pina, C. Silva, and P. Ferrao, ˜ The impact of demand side management strategies in the penetration of renewable electricity, Energy 41 (2012), 128-137. https://doi.org/10.1016/j.energy.2011.06.013
- P. Finn, C. Fitzpatrick, and D. Connolly, Demand side management of electric car charging: Benefits for consumer and grid, Energy 42 (2012), 358-363. https://doi.org/10.1016/j.energy.2012.03.042
- S. Lee, J. Lee, H. Jung, J. Cho, J. Hong, S. Lee, and D. Har, Optimal power management for nanogrids based on technical information of electric appliances, Energ. Buildings 191 (2019), 174-186. https://doi.org/10.1016/j.enbuild.2019.03.026
- S. Hussain Nengroo, M. Umair Ali, A. Zafar, S. Hussain, T. Murtaza, M. Junaid Alvi, K. V. G. Raghavendra, and H. Jee Kim, An optimized methodology for a hybrid photo-voltaic and energy storage system connected to a low-voltage grid, Electron 8 (2019), 176.
- S. Lee, H. Jin, L. F. Vecchietti, J. Hong, and D. Har, Short-term predictive power management of Pv-powered nanogrids, IEEE Access 8 (2020). PMID: 147839-147857.
- A. P. S. Meliopoulos, E. Polymeneas, Z. Tan, R. Huang, and D. Zhao, Advanced distribution management system, IEEE Trans. Smart Grid 4 (2013), 2109-2117. https://doi.org/10.1109/TSG.2013.2261564
- J. S. Choi, A hierarchical distributed energy management agent framework for smart homes, grids, and cities, IEEE Commun. Mag. 57 (2019), 113-119. https://doi.org/10.1109/MCOM.2019.1900073
- M. Lee, T. Hong, K. Jeong, and J. Kim, A bottom-up approach for estimating the economic potential of the rooftop solar photovoltaic system considering the spatial and temporal diversity, Appl. Energy 232 (2018), 640-656. https://doi.org/10.1016/j.apenergy.2018.09.176
- J. An, M. Lee, S. Yeom, and T. Hong, Determining the peer-to-peer electricity trading price and strategy for energy prosumers and consumers within a microgrid, Appl. Energy 261 (2020), 114335.
- J. S. Choi, Energy management agent frameworks: Scalable, flexible, and efficient architectures for 5-g vertical industries, IEEE Ind. Electron. Mag. 15 (2021), 62-73. https://doi.org/10.1109/MIE.2020.3016917
- X. Liu, Y. Ding, H. Tang, and F. Xiao, A data mining-based framework for the identification of daily electricity usage patterns and anomaly detection in building electricity consumption data, Energ. Buildings 231 (2021), 110601.
- X. Wang and S.-H. Ahn, Real-time prediction and anomaly detection of electrical load in a residential community, Appl. Energy 259 (2020), 114145.
- S. Lee, H. Jin, L. F. Vecchietti, J. Hong, K. B. Park, P. N. Son, and D. Har, Cooperative decentralized peer-to-peer electricity trading of nanogrid clusters based on predictions of load demand and Pv power generation using a gated recurrent unit model, IET Renew. Power Gener. 15 (2021), 3505-3523. https://doi.org/10.1049/rpg2.12195
- Y. Zhang, A. Lundblad, P. E. Campana, F. Benavente, and J. Yan, Battery sizing and rule-based operation of grid-connected photovoltaic-battery system: A case study in Sweden, Energ. Conver Manage. 133 (2017), 249-263. https://doi.org/10.1016/j.enconman.2016.11.060
- J. Yan, Y. Yang, P. E. Elia Campana, and J. He, City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China, Nat. Energy 4 (2019), 709-717. https://doi.org/10.1038/s41560-019-0441-z
- T. Y. Jung, D. Kim, J. Moon, and S. Lim, A scenario analysis of solar photovoltaic grid parity in the Maldives: The case of Malahini resort, Sustainability 10 (2018), 4045.
- F. de Angelis, M. Boaro, D. Fuselli, S. Squartini, F. Piazza, and Q. Wei, Optimal home energy management under dynamic electrical and thermal constraints, IEEE Trans. Ind. Inform. 9 (2012), 1518-1527. https://doi.org/10.1109/TII.2012.2230637
- G. Wang, Q. Zhang, H. Li, B. C. McLellan, S. Chen, Y. Li, and Y. Tian, Study on the promotion impact of demand response on distributed Pv penetration by using noncooperative game theoretical analysis, Appl. Energy. 185 (2017), 1869-1878. https://doi.org/10.1016/j.apenergy.2016.01.016
- C. Sun, F. Sun, and S. J. Moura, Nonlinear predictive energy management of residential buildings with photovoltaics & batteries, J. Power Sources 325 (2016), 723-731. https://doi.org/10.1016/j.jpowsour.2016.06.076
- M. Muratori and G. Rizzoni, Residential demand response: Dynamic energy management and time-varying electricity pricing, IEEE Trans. Power Syst. 31 (2015), 1108-1117. https://doi.org/10.1109/TPWRS.2015.2414880
- J. Munkhammar, J. Widen, and J. Ryden, On a probability distribution model combining household power consumption, electric vehicle home-charging and photovoltaic power production, Appl. Energy 142 (2015), 135-143. https://doi.org/10.1016/j.apenergy.2014.12.031
- M. N. Assimakopoulos, N. Barmparesos, A. Pantazaras, T. Karlessi, and S. E. Lee, On the comparison of occupancy in relation to energy consumption and indoor environmental quality: A case study, Energy Procedia 134 (2017), 875-884. https://doi.org/10.1016/j.egypro.2017.09.548
- A. Capozzoli, M. S. Piscitelli, and S. Brandi, Mining typical load profiles in buildings to support energy management in the smart city context, Energy Procedia 134 (2017), 865-874. https://doi.org/10.1016/j.egypro.2017.09.545
- G. Chicco, Overview and performance assessment of the clustering methods for electrical load pattern grouping, Energy 42 (2012), 68-80. https://doi.org/10.1016/j.energy.2011.12.031
- M. P. Fernandes, J. L. Viegas, S. M. Vieira, and J. M. Sousa, Analysis of residential natural gas consumers using fuzzy C-means clustering, (IEEE international conference on fuzzy systems, Vancouver, Canada), 2016, pp. 1484-1491.
- O. Erdinc, A. Tas,cikaraoglu, N. G. Paterakis, Y. Eren, and J. P. S. Catalao, End-user comfort oriented day-ahead planning for responsive residential hvac demand aggregation considering weather forecasts, IEEE Trans. Smart Grid 8 (2016), 362-372. https://doi.org/10.1109/TSG.2016.2556619
- S. Bera, P. Gupta, and S. Misra, D2S: Dynamic demand scheduling in smart grid using optimal portfolio selection strategy, IEEE Trans. Smart Grid 6 (2015), 1434-1442. https://doi.org/10.1109/TSG.2014.2386325
- T. Logenthiran, D. Srinivasan, and T. Z. Shun, Demand side management in smart grid using heuristic optimization, IEEE Trans. Smart Grid 3 (2012), 1244-1252. https://doi.org/10.1109/TSG.2012.2195686
- M. Yu and S. H. Hong, A real-time demand-response algorithm for smart grids: A Stackelberg game approach, IEEE Trans. Smart Grid 7 (2015), 879-888.
- Z. Luo, S.-H. Hong, and J.-B. Kim, A price-based demand response scheme for discrete manufacturing in smart grids, Energies 9 (2016), 650.
- K. Vanthournout, B. Dupont, W. Foubert, C. Stuckens, and S. Claessens, An automated residential demand response pilot experiment, based on day-ahead dynamic pricing, Appl. Energy 155 (2015), 195-203. https://doi.org/10.1016/j.apenergy.2015.05.100
- L. O. AlAbdulkarim and Z. Lukszo, Smart metering for the future energy systems in the Netherlands, (Fourth International Conference on Critical Infrastructures, Sweden), 2009, pp. 1-7.
- P. van Aubel and E. Poll, Smart metering in the Netherlands: What, how, and why, Int. J. Electr. Power Energy Syst. 109 (2019), 719-725. https://doi.org/10.1016/j.ijepes.2019.01.001
- C. Hinrichs, S. Lehnhoff, and M. Sonnenschein, A decentralized heuristic for multiple-choice combinatorial optimization problems, In Operations research proceedings, Springer, 2014, 297-302.
- H. F. Wedde, S. Lehnhoff, E. Handschin, and O. Krause, Dezentrale vernetzte Energiebewirtschaftung (dezent), Im Netz Der Zukunft, Wirtschaftsinformatik 49 (2007), 361-369. https://doi.org/10.1007/s11576-007-0080-z
- S. Lehnhoff, T. Klingenberg, M. Blank, M. Calabria, and W. Schumacher. Distributed coalitions for reliable and stable provision of frequency response reserve, (IEEE International Workshop on Inteligent Energy Systems, Vienna, austria), 2013, pp. 11-18.
- H. Kim, E. Hong, C. Ahn, and D. Har, A pilot symbol pattern enabling data recovery without side information in PTS-based OFDM systems, IEEE Trans. Broadcast. 57 (2011), 307-312. https://doi.org/10.1109/TBC.2011.2105611
- E. Hong, K. Kim, and D. Har, Spectrum sensing by parallel pairs of cross-correlators and comb filters for ofdm systems with pilot tones, IEEE Sens. J. 12 (2012), 2380-2383. https://doi.org/10.1109/JSEN.2012.2188792
- I. Javed, A. Loan, and W. Mahmood, An energy-efficient antijam cognitive system for wireless ofdm communication, Int. J. Commun. Syst. 27 (2014), 3460-3487. https://doi.org/10.1002/dac.2557
- J.-M. Chiou, Y.-C. Zhang, W.-H. Chen, and C.-W. Chang, A functional data approach to missing value imputation and outlier detection for traffic flow data, Transportmetrica B 2 (2014), 106-129. https://doi.org/10.1080/21680566.2014.892847
- A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, and Y. Y. Tang, Spectral-spatial graph convolutional networks for semisupervised hyperspectral image classification, IEEE Geosci. Remote Sens. Lett. 16 (2018), 241-245. https://doi.org/10.1109/LGRS.2018.2869563
- T. Kim, L. F. Vecchietti, K. Choi, S. Lee, and D. Har, Machine learning for advanced wireless sensor networks: A review, IEEE Sens J. 21 (2020). PMID: 12379-12397.
- M. Seo, L. F. Vecchietti, S. Lee, and D. Har, Rewards prediction-based credit assignment for reinforcement learning with sparse binary rewards, IEEE Access 7 (2019). PMID: 118776-118791.
- D. Masters and C. Luschi. Revisiting small batch training for deep neural networks, arXiv Preprint, 2018. https://doi.org/10.48550/arXiv.1804.07612
- N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, arXiv Preprint, 2016 https://doi.org/10.48550/arXiv.1609.04836