DOI QR코드

DOI QR Code

Anomaly detection of smart metering system for power management with battery storage system/electric vehicle

  • Sangkeum Lee (Environment ICT Research Section, Electronics and Telecommunications Research Institute) ;
  • Sarvar Hussain Nengroo (Cho Chun Shik Graduate School of Mobility, Korea Advanced Institute of Science and Technology) ;
  • Hojun Jin (Cho Chun Shik Graduate School of Mobility, Korea Advanced Institute of Science and Technology) ;
  • Yoonmee Doh (Environment ICT Research Section, Electronics and Telecommunications Research Institute) ;
  • Chungho Lee (Environment ICT Research Section, Electronics and Telecommunications Research Institute) ;
  • Taewook Heo (Environment ICT Research Section, Electronics and Telecommunications Research Institute) ;
  • Dongsoo Har (Cho Chun Shik Graduate School of Mobility, Korea Advanced Institute of Science and Technology)
  • Received : 2022.04.05
  • Accepted : 2022.07.06
  • Published : 2023.08.10

Abstract

A novel smart metering technique capable of anomaly detection was proposed for real-time home power management system. Smart meter data generated in real-time were obtained from 900 households of single apartments. To detect outliers and missing values in smart meter data, a deep learning model, the autoencoder, consisting of a graph convolutional network and bidirectional long short-term memory network, was applied to the smart metering technique. Power management based on the smart metering technique was executed by multi-objective optimization in the presence of a battery storage system and an electric vehicle. The results of the power management employing the proposed smart metering technique indicate a reduction in electricity cost and amount of power supplied by the grid compared to the results of power management without anomaly detection.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (Nos. 20191210301580 and 20192010107290).

References

  1. E. Administration, Annual energy review, 1990, DC WA.
  2. R. Tol, Sources of greenhouse gas emissions, Department of Economics, University of Sussex Business School. 2020.
  3. E.P. Monthly, 2015, US Energy Information Administration.
  4. S. H. Nengroo, M. A. Kamran, M. U. Ali, D.-H. Kim, M.-S. Kim, A. Hussain, and H. J. Kim, Dual battery storage system: An optimized strategy for the utilization of renewable photovoltaic energy in the United Kingdom, Electron 7 (2018), 177.
  5. S. Karjalainen and H. Ahvenniemi, Pleasure is the profit-the adoption of solar Pv systems by households in Finland, Renew Energy 133 (2019), 44-52. https://doi.org/10.1016/j.renene.2018.10.011
  6. B. H. Zaidi, D. M. S. Bhatti, and I. Ullah, Combinatorial auctions for energy storage sharing amongst the households, J. Energy Storage 19 (2018), 291-301. https://doi.org/10.1016/j.est.2018.08.010
  7. I. Wittenberg and E. Matthies, Solar policy and practice in Germany: How do residential households with solar panels use electricity? Energy Res. Soc. Sci. 21 (2016), 199-211. https://doi.org/10.1016/j.erss.2016.07.008
  8. H. A. Baer and M. Singer, The anthropology of climate change: An integrated critical perspective, Routledge, 2018.
  9. A. Pina, C. Silva, and P. Ferrao, ˜ The impact of demand side management strategies in the penetration of renewable electricity, Energy 41 (2012), 128-137. https://doi.org/10.1016/j.energy.2011.06.013
  10. P. Finn, C. Fitzpatrick, and D. Connolly, Demand side management of electric car charging: Benefits for consumer and grid, Energy 42 (2012), 358-363. https://doi.org/10.1016/j.energy.2012.03.042
  11. S. Lee, J. Lee, H. Jung, J. Cho, J. Hong, S. Lee, and D. Har, Optimal power management for nanogrids based on technical information of electric appliances, Energ. Buildings 191 (2019), 174-186. https://doi.org/10.1016/j.enbuild.2019.03.026
  12. S. Hussain Nengroo, M. Umair Ali, A. Zafar, S. Hussain, T. Murtaza, M. Junaid Alvi, K. V. G. Raghavendra, and H. Jee Kim, An optimized methodology for a hybrid photo-voltaic and energy storage system connected to a low-voltage grid, Electron 8 (2019), 176.
  13. S. Lee, H. Jin, L. F. Vecchietti, J. Hong, and D. Har, Short-term predictive power management of Pv-powered nanogrids, IEEE Access 8 (2020). PMID: 147839-147857.
  14. A. P. S. Meliopoulos, E. Polymeneas, Z. Tan, R. Huang, and D. Zhao, Advanced distribution management system, IEEE Trans. Smart Grid 4 (2013), 2109-2117. https://doi.org/10.1109/TSG.2013.2261564
  15. J. S. Choi, A hierarchical distributed energy management agent framework for smart homes, grids, and cities, IEEE Commun. Mag. 57 (2019), 113-119. https://doi.org/10.1109/MCOM.2019.1900073
  16. M. Lee, T. Hong, K. Jeong, and J. Kim, A bottom-up approach for estimating the economic potential of the rooftop solar photovoltaic system considering the spatial and temporal diversity, Appl. Energy 232 (2018), 640-656. https://doi.org/10.1016/j.apenergy.2018.09.176
  17. J. An, M. Lee, S. Yeom, and T. Hong, Determining the peer-to-peer electricity trading price and strategy for energy prosumers and consumers within a microgrid, Appl. Energy 261 (2020), 114335.
  18. J. S. Choi, Energy management agent frameworks: Scalable, flexible, and efficient architectures for 5-g vertical industries, IEEE Ind. Electron. Mag. 15 (2021), 62-73. https://doi.org/10.1109/MIE.2020.3016917
  19. X. Liu, Y. Ding, H. Tang, and F. Xiao, A data mining-based framework for the identification of daily electricity usage patterns and anomaly detection in building electricity consumption data, Energ. Buildings 231 (2021), 110601.
  20. X. Wang and S.-H. Ahn, Real-time prediction and anomaly detection of electrical load in a residential community, Appl. Energy 259 (2020), 114145.
  21. S. Lee, H. Jin, L. F. Vecchietti, J. Hong, K. B. Park, P. N. Son, and D. Har, Cooperative decentralized peer-to-peer electricity trading of nanogrid clusters based on predictions of load demand and Pv power generation using a gated recurrent unit model, IET Renew. Power Gener. 15 (2021), 3505-3523. https://doi.org/10.1049/rpg2.12195
  22. Y. Zhang, A. Lundblad, P. E. Campana, F. Benavente, and J. Yan, Battery sizing and rule-based operation of grid-connected photovoltaic-battery system: A case study in Sweden, Energ. Conver Manage. 133 (2017), 249-263. https://doi.org/10.1016/j.enconman.2016.11.060
  23. J. Yan, Y. Yang, P. E. Elia Campana, and J. He, City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China, Nat. Energy 4 (2019), 709-717. https://doi.org/10.1038/s41560-019-0441-z
  24. T. Y. Jung, D. Kim, J. Moon, and S. Lim, A scenario analysis of solar photovoltaic grid parity in the Maldives: The case of Malahini resort, Sustainability 10 (2018), 4045.
  25. F. de Angelis, M. Boaro, D. Fuselli, S. Squartini, F. Piazza, and Q. Wei, Optimal home energy management under dynamic electrical and thermal constraints, IEEE Trans. Ind. Inform. 9 (2012), 1518-1527. https://doi.org/10.1109/TII.2012.2230637
  26. G. Wang, Q. Zhang, H. Li, B. C. McLellan, S. Chen, Y. Li, and Y. Tian, Study on the promotion impact of demand response on distributed Pv penetration by using noncooperative game theoretical analysis, Appl. Energy. 185 (2017), 1869-1878. https://doi.org/10.1016/j.apenergy.2016.01.016
  27. C. Sun, F. Sun, and S. J. Moura, Nonlinear predictive energy management of residential buildings with photovoltaics & batteries, J. Power Sources 325 (2016), 723-731. https://doi.org/10.1016/j.jpowsour.2016.06.076
  28. M. Muratori and G. Rizzoni, Residential demand response: Dynamic energy management and time-varying electricity pricing, IEEE Trans. Power Syst. 31 (2015), 1108-1117. https://doi.org/10.1109/TPWRS.2015.2414880
  29. J. Munkhammar, J. Widen, and J. Ryden, On a probability distribution model combining household power consumption, electric vehicle home-charging and photovoltaic power production, Appl. Energy 142 (2015), 135-143. https://doi.org/10.1016/j.apenergy.2014.12.031
  30. M. N. Assimakopoulos, N. Barmparesos, A. Pantazaras, T. Karlessi, and S. E. Lee, On the comparison of occupancy in relation to energy consumption and indoor environmental quality: A case study, Energy Procedia 134 (2017), 875-884. https://doi.org/10.1016/j.egypro.2017.09.548
  31. A. Capozzoli, M. S. Piscitelli, and S. Brandi, Mining typical load profiles in buildings to support energy management in the smart city context, Energy Procedia 134 (2017), 865-874. https://doi.org/10.1016/j.egypro.2017.09.545
  32. G. Chicco, Overview and performance assessment of the clustering methods for electrical load pattern grouping, Energy 42 (2012), 68-80. https://doi.org/10.1016/j.energy.2011.12.031
  33. M. P. Fernandes, J. L. Viegas, S. M. Vieira, and J. M. Sousa, Analysis of residential natural gas consumers using fuzzy C-means clustering, (IEEE international conference on fuzzy systems, Vancouver, Canada), 2016, pp. 1484-1491.
  34. O. Erdinc, A. Tas,cikaraoglu, N. G. Paterakis, Y. Eren, and J. P. S. Catalao, End-user comfort oriented day-ahead planning for responsive residential hvac demand aggregation considering weather forecasts, IEEE Trans. Smart Grid 8 (2016), 362-372. https://doi.org/10.1109/TSG.2016.2556619
  35. S. Bera, P. Gupta, and S. Misra, D2S: Dynamic demand scheduling in smart grid using optimal portfolio selection strategy, IEEE Trans. Smart Grid 6 (2015), 1434-1442. https://doi.org/10.1109/TSG.2014.2386325
  36. T. Logenthiran, D. Srinivasan, and T. Z. Shun, Demand side management in smart grid using heuristic optimization, IEEE Trans. Smart Grid 3 (2012), 1244-1252. https://doi.org/10.1109/TSG.2012.2195686
  37. M. Yu and S. H. Hong, A real-time demand-response algorithm for smart grids: A Stackelberg game approach, IEEE Trans. Smart Grid 7 (2015), 879-888.
  38. Z. Luo, S.-H. Hong, and J.-B. Kim, A price-based demand response scheme for discrete manufacturing in smart grids, Energies 9 (2016), 650.
  39. K. Vanthournout, B. Dupont, W. Foubert, C. Stuckens, and S. Claessens, An automated residential demand response pilot experiment, based on day-ahead dynamic pricing, Appl. Energy 155 (2015), 195-203. https://doi.org/10.1016/j.apenergy.2015.05.100
  40. L. O. AlAbdulkarim and Z. Lukszo, Smart metering for the future energy systems in the Netherlands, (Fourth International Conference on Critical Infrastructures, Sweden), 2009, pp. 1-7.
  41. P. van Aubel and E. Poll, Smart metering in the Netherlands: What, how, and why, Int. J. Electr. Power Energy Syst. 109 (2019), 719-725. https://doi.org/10.1016/j.ijepes.2019.01.001
  42. C. Hinrichs, S. Lehnhoff, and M. Sonnenschein, A decentralized heuristic for multiple-choice combinatorial optimization problems, In Operations research proceedings, Springer, 2014, 297-302.
  43. H. F. Wedde, S. Lehnhoff, E. Handschin, and O. Krause, Dezentrale vernetzte Energiebewirtschaftung (dezent), Im Netz Der Zukunft, Wirtschaftsinformatik 49 (2007), 361-369. https://doi.org/10.1007/s11576-007-0080-z
  44. S. Lehnhoff, T. Klingenberg, M. Blank, M. Calabria, and W. Schumacher. Distributed coalitions for reliable and stable provision of frequency response reserve, (IEEE International Workshop on Inteligent Energy Systems, Vienna, austria), 2013, pp. 11-18.
  45. H. Kim, E. Hong, C. Ahn, and D. Har, A pilot symbol pattern enabling data recovery without side information in PTS-based OFDM systems, IEEE Trans. Broadcast. 57 (2011), 307-312. https://doi.org/10.1109/TBC.2011.2105611
  46. E. Hong, K. Kim, and D. Har, Spectrum sensing by parallel pairs of cross-correlators and comb filters for ofdm systems with pilot tones, IEEE Sens. J. 12 (2012), 2380-2383. https://doi.org/10.1109/JSEN.2012.2188792
  47. I. Javed, A. Loan, and W. Mahmood, An energy-efficient antijam cognitive system for wireless ofdm communication, Int. J. Commun. Syst. 27 (2014), 3460-3487. https://doi.org/10.1002/dac.2557
  48. J.-M. Chiou, Y.-C. Zhang, W.-H. Chen, and C.-W. Chang, A functional data approach to missing value imputation and outlier detection for traffic flow data, Transportmetrica B 2 (2014), 106-129. https://doi.org/10.1080/21680566.2014.892847
  49. A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, and Y. Y. Tang, Spectral-spatial graph convolutional networks for semisupervised hyperspectral image classification, IEEE Geosci. Remote Sens. Lett. 16 (2018), 241-245. https://doi.org/10.1109/LGRS.2018.2869563
  50. T. Kim, L. F. Vecchietti, K. Choi, S. Lee, and D. Har, Machine learning for advanced wireless sensor networks: A review, IEEE Sens J. 21 (2020). PMID: 12379-12397.
  51. M. Seo, L. F. Vecchietti, S. Lee, and D. Har, Rewards prediction-based credit assignment for reinforcement learning with sparse binary rewards, IEEE Access 7 (2019). PMID: 118776-118791.
  52. D. Masters and C. Luschi. Revisiting small batch training for deep neural networks, arXiv Preprint, 2018. https://doi.org/10.48550/arXiv.1804.07612
  53. N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, arXiv Preprint, 2016 https://doi.org/10.48550/arXiv.1609.04836