DOI QR코드

DOI QR Code

Diversity characteristics of four-element ring slot-based MIMO antenna for sub-6-GHz applications

  • Vipul Kaushal (Department of Electronic Science, University of Delhi South Campus) ;
  • Amit Birwal (Department of Electronic Science, University of Delhi South Campus) ;
  • Kamlesh Patel (Department of Electronic Science, University of Delhi South Campus)
  • Received : 2022.04.04
  • Accepted : 2022.11.28
  • Published : 2023.08.10

Abstract

This paper proposes four-ring slot resonator-based MIMO antennas of 75×150 mm2 without and with CSRR structures in the sub-6-GHz range. These orthogonal-fed antennas have shown diverse characteristics with dual polarization. L-shaped parasitic structures have increased the isolation (i.e., >40 dB) in the single-element antenna over the band of 3.4 GHz-3.8 GHz. A set of three CSRR structures in the MIMO antenna reduced the coupling between antenna ports placed in an inline arrangement and enhanced the isolation from 12 dB to 20 dB and the diversity characteristics. The S-parameters of both MIMO antennas are measured and used to evaluate MIMO parameters like ECC, TARC, MEG, and channel capacity loss. The simulation results show the variations in the gain and directivity on exciting linear and dual polarizations. The diversity performance of the reported MIMO antennas is suitable for 5G applications.

Keywords

Acknowledgement

This work was supported by the Faculty Research Programme (FRP) of the Institute of Eminence (IoE) scheme of the University of Delhi (Letter ref. no. IoE/FRP/PCMS/2020/27 dated 31.12.2020).

References

  1. J. R. Hampton, M. A. Cruz, N. M. Merheb, A. R. Hammons, D. E. Paunil, and F. Ouyang, MIMO channel measurements for urban military applications, (MILCOM 2008-2008 IEEE Military Communications Conference, San Diego, CA, USA) 2008, pp. 1-7.
  2. M. S. Sharawi, Printed MIMO antenna systems: performance metrics, implementations, and challenges, Forum for Electromagnetic Research Methods and Application Technologies (FERMAT). 1 (2014), 1-11.
  3. H.C. Huang, Overview of antenna designs and considerations in 5G cellular phones, (2018 International Workshop on Antenna Technology (IWAT), Nanjing, China), 2018, pp. 1-4.
  4. W. Zhang, Z. Weng, and L. Wang, Design of a dual-band MIMO antenna for 5G smartphone application, (2018 International Workshop on Antenna Technology (IWAT), Nanjing, China), 2018, pp. 1-3.
  5. A. Zhao, Z. Ren, and S. Wu, Broadband MIMO antenna system for 5g operations in mobile phones, Int. J. RF Microw. Comput.-Aided Eng. 29 (2019), no. 10. https://doi.org/10.1002/mmce.21857
  6. S. Pahadsingh and S. Sahu, Four-port MIMO integrated antenna system with DRA for cognitive radio platforms, Int. J. Electron. Commun. 92 (2018), 98-110. https://doi.org/10.1016/j.aeue.2018.05.018
  7. J. K. Hong, Performance analysis of dual-polarized massive mimo system with human-care IoT devices for cellular networks, J. Sens. (2018), 2018(2018). https://doi.org/10.1155/2018/3604520
  8. F. Jolani, Y. Yu, and Z. Chen, A novel broadband omnidirectional dual-polarized MIMO antenna for 4G LTE applications, (2014 IEEE International Wireless Symposium, Xi'an, China), 2014, pp. 1-4.
  9. P. Nirmal, A. B. Nandgaonka, and S. L. Nalbalwa, A MIMO antenna: Study on reducing mutual coupling and improving isolation, (2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology, Bangalore, India), 2016, pp. 1736-1740.
  10. K. Yu, Y. Li, and X. Liu, Mutual coupling reduction of a MIMO antenna array using 3-D novel meta-material structures, Appl. Comput. Electromagn. Soc. J. 33 (2018), no. 7, 758-763.
  11. F. Liu, J. Guo, L. Zhao, G. -L. Huang, Y. Li, and Y. Yin, Dual-band metasurface-based decoupling method for two closely packed dual-band antennas, IEEE Trans. Antennas Propag. 68 (2020), no. 1, 552-557. https://doi.org/10.1109/TAP.2019.2940316
  12. F. Liu, J. Guo, L. Zhao, G. -L. Huang, Y. Li, and Y. Yin, Ceramic superstrate-based decoupling method for two closely packed antennas with cross-polarization suppression, IEEE Trans. Antennas Propag. 69 (2021), no. 3, 1751-1756. https://doi.org/10.1109/TAP.2020.3016388
  13. C. A. Balanis, Microstrip antennas, In Antenna theory: Analysis and design, 3rd ed., John Wiley & Sons, Inc, Hoboken, New Jersey, 2016, 811-876.
  14. F. Elek, R. Abhari, and G. V. Eleftheriades, A uni-directional ring-slot antenna achieved by using an electromagnetic bandgap surface, IEEE Trans. Antennas Propag. 53 (2005), no. 1, 181-190. https://doi.org/10.1109/TAP.2004.840533
  15. N. O. Parchin, Y. I. A. Al-Yasir, A. H. Ali, I. Elfergani, J. M. Noras, J. Rodriguez, and R. A. Abd-Alhameed, Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications, IEEE Access 7 (2019), 15612-15622. https://doi.org/10.1109/ACCESS.2019.2893112
  16. J. Li, X. Zhang, Z. Wang, X. Chen, J. Chen, Y. Li, and A. Zhang, Dual-band eight-antenna array design for MIMO applications in 5G mobile terminals, IEEE Access 7 (2019), 71636-71644. https://doi.org/10.1109/ACCESS.2019.2908969
  17. S. H. Chae, S. Oh, and S. O. Park, Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna, IEEE Antennas Wirel. Propag. Lett. 6 (2007), 122-125. https://doi.org/10.1109/LAWP.2007.893109
  18. C. Wang, S. Xiao, W. Wang, C. Wang, and S. Liu, An analytical approach for antenna performance evaluation for MIMO systems, (2015 International Symposium on Antennas and Propagation, Hobart, Australia), 2015, pp. 1-4.
  19. J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines, IEEE Trans. Microw. Theory Tech. 53 (2005), no. 4, 1451-1461. https://doi.org/10.1109/TMTT.2005.845211
  20. N. Ojaroudi Parchin, H. Jahanbakhsh Basherlou, M. Alibakhshikenari, Y. Ojaroudi Parchin, Y. I. A. Al-Yasir, R. A. Abd-Alhameed, and E. Limiti, Mobile-phone antenna array with diamond-ring slot elements for 5G massive MIMO systems, Electronics 8 (2019), no. 5, 521.
  21. Q. Liu, H. Liu, W. He, and S. He, A low-profile dual-band dual-polarized antenna with an AMC reflector for 5G communications, IEEE Access 8 (2020), 24072-24080. https://doi.org/10.1109/ACCESS.2020.2970473
  22. A. A. Khan, M. H. Jamaluddin, S. Aqeel, J. Nasir, J. R. Kazim, and O. Owais, Dual-band MIMO dielectric resonator antenna for WiMAX/WLAN applications, IET Microw. Antennas Propag. 11 (2017), no. 1, 113-120. https://doi.org/10.1049/iet-map.2015.0745
  23. K. S. Sultan and H. H. Abdullah, Planar UWB MIMO-diversity antenna with dual notch characteristics, Prog Electromagn Res C Pier C 93 (2019), 119-129. https://doi.org/10.2528/PIERC19031202
  24. S. Tripathi, A. Mohan, and S. Yadav, A compact Koch fractal UWB MIMO antenna with WLAN band-rejection, Antennas Wirel Propag Lett 14 (2015), 1565-1568. https://doi.org/10.1109/LAWP.2015.2412659
  25. M. Shehata, M. S. Said, and H. Mostafa, Dual notched band quad-element MIMO antenna with multitone interference suppression for IR-UWB wireless applications, IEEE Trans. Antennas Propag. 66 (2018), no. 11, 5737-5746. https://doi.org/10.1109/TAP.2018.2868725
  26. M. Bilal, R. Saleem, H. H. Abbasi, M. F. Shafique, and A. K. Brown, An FSS-based nonplanar quad-element UWB-MIMO antenna system, IEEE Antennas Wirel. Propag. Lett. 16 (2017), 987-990.  https://doi.org/10.1109/LAWP.2016.2615884