DOI QR코드

DOI QR Code

Assessment of physical condition of old large Chionanthus retusus(Chinese Fringe Tree) using structural stability analysis

천연기념물 이팝나무 노거수 구조안정성 진단을 통한 물리적 생육상태 평가

  • SON Jiwon (Natural Heritage Center, National Research Institute of Cultural Heritage) ;
  • SHIN Jinho (Natural Heritage Center, National Research Institute of Cultural Heritage)
  • 손지원 (국립문화재연구원 자연문화재연구실) ;
  • 신진호 (국립문화재연구원 자연문화재연구실)
  • Received : 2022.08.24
  • Accepted : 2022.10.24
  • Published : 2023.03.30

Abstract

Decay or large cavities inside trees are the main causes of trees overturning and broken branches, and structurally weakened trees are more vulnerable to strong winds and heavy snowfall. Recently, as strong winds and typhoons increase due to climate change, the damage to human life and property due to trees overturning continues to increase, and cultural assets are in a similar situation. In particular, old big trees are structurally vulnerable to external shocks such as strong winds and heavy snowfall. This study was aimed at providing a scientific basis for preventive protection measures by conducting a structural stability diagnosis of seven retusa fringe trees designated as natural monuments. For the structural stability diagnosis, tree risk assessment and internal tree defect measurements were performed. As a result of the tree risk assessment, the Retusa Fringe Trees in Sinjeon-ri, Yangsan and Gwangyangeupsu had the highest risk of broken branches due to weak branch attachment strength. As a result of the diagnosis of internal defects of cross sections of measured trees, there were suspected cavities or severe decay in all except two trees of the population of Retusa Fringe Trees in Pyeongji-ri. Natural disasters due to climate change are increasing, and the scale is getting larger, so it is very important to preemptively manage large old trees through scientific structural safety diagnosis to manage trees that are vulnerable to environmental changes.

노거수 내부의 대규모 공동이나 부후는 나무가 쓰러지거나 부러지는 주요 원인 중 하나로, 구조적으로 약해진 나무는 강풍이나 폭설에 더욱 취약하다. 특히 노거수는 강풍, 폭설 등과 같은 외부 충격 발생 시 피해 가능성이 상대적으로 더 높고 한번 훼손되면 회복이 어렵기 때문에 예방적 관리가 중요하다. 이에, 천연기념물 이팝나무 7개소를 대상으로 육안교목평가(VTA)와 나무단층영상촬영을 실시하여 노거수의 물리적 생육상태를 평가하였다. 육안교목평가 결과, 상대적으로 '양산 신전리 이팝나무'와 '순천 평중리 이팝나무', '광양읍수와 이팝나무'는 가지의 연결각도가 좁고, 부착력이 약한 것으로 분석되었으나 수관이 왜소하고 하중 부담이 낮아 추가적인 보호시설 설치보다는 위험징후에 대한 정기 모니터링이 필요한 것으로 나타났다. 나무단층영상촬영 결과 이팝나무 전체적으로 내부에 공동이 탐지되었고 '순천 평중리 이팝나무(70.8%)', '고창 중산리 이팝나무(66.8%)', '광양읍수와 이팝나무(56.9%)' 순으로 공동이나 부후로 추정되는 면적이 넓은 것으로 조사되었다.

Keywords

References

  1. 국립문화재연구소, 2002, 「천연기념물 노거수 실태조사 보고서」, p.299.
  2. 국립문화재연구소, 2003, 「천연기념물 노거수 실태조사 보고서」, p.363.
  3. 국립문화재연구소, 2015, 「천연기념물(노거수) 보호시설 안정성.적정성 연구」, pp.47~48.
  4. 국립문화재연구소, 2016, 「천연기념물 노거수 위험진단 매뉴얼」, p.53.
  5. 국립문화재연구소, 2019, 「천연기념물(이팝나무) 생육진단 및 관리방안 마련」, p.271.
  6. 문화재관리국, 1970, 문화재대관(천연기념물편), 문화재관리국, p11.
  7. 박상진, 2011, 「우리 나무의 세계」, 김영사. p.572.
  8. 양산군, 1994, 「문화재실태조사서」, p.3.
  9. Argus Electronic Gmbh, 2017, Picus Sonic Tomograph Manual; Argus Electronic Gmbh: Rostock, p.14.
  10. Bhatia, K.T..Vecchi, G.A..Knutson, T.R..Kossin, K.W..Whitlock, C.E., 2019, 'Recent increases in tropical cyclone intensification rates', Nature Communications 10(1): 635, pp.1~7. https://doi.org/10.1038/s41467-018-07882-8
  11. Brazee, N.J..Marra, R.E..Gocke, L..Wassenaer, P.V., 2011, 'Non-destructive assessment of internal rot in three hardwood species of northeastern North America using sonic and electrical impedance tomography', Forestry 84(1), pp.33~39. https://doi.org/10.1093/forestry/cpq040
  12. British Standards Institution, 2010, BS 3998-2010 Tree work-Recommendations, BSI Standards Publication, p.17.
  13. Costello, L.R..Berry, A.M., 1991, 'California Tree Failure Report Program: An Overview', Journal of Arboriculture 17(9), pp.250~255. https://doi.org/10.48044/jauf.1991.058
  14. Deflorio, G..Fink, S..Schwarze, F.W.M.R., 2008, 'Detection of incipient decay in tree stems with sonic tomography after wounding and fungal inoculation', Wood Science Technology 42(2), pp.117~132. https://doi.org/10.1007/s00226-007-0159-0
  15. Gilbert, E.A..Smiley, E.T., 2004, 'Picus sonic tomography for the quantification of decay in white oak(Quercus alba) and hickory(Carya spp.)', Journal of Arboriculture 30(5), pp.277~281. https://doi.org/10.48044/jauf.2004.033
  16. Gilbert, G.S..Ballesteros, J.O..Barrios-Rodriguez, C.A..Bonadies, E.F. 외, 2016, 'Use of sonic tomography to detect and quantify wood decay in living trees', Applications in Plant Sciences 4(12), pp.1~13. https://doi.org/10.3732/apps.1600060
  17. Gilman, E.F., 2013, An Illustrated Guide to Pruning(Third ed.). Delmare, Clifton Park, p.352.
  18. Gocke, L., 2017a, Picus Sonic Tomograph Manual, Argus Electronic Gmbh, p.14.
  19. Gocke, L., 2017b, PiCUS: Treetronic electric resistance tomograph version 3. Hardware manual, argus electronic gmbh, p.41.
  20. Mattheck, C..Bethge, K..Webber, K., 2015, The Body Language of Trees; Encyclopedia of Visual Tree Assessment, Karlsruhe Institute of Technology, p.548.
  21. Moon, M..Ha, K.J., 2021, 'Abnormal activities of tropical cyclones in 2019 over the Korean peninsula', Geophysical Research Letters 48(7): e90784, pp.1~9. https://doi.org/10.1029/2020GL090784
  22. Rabe, C..Ferner, D..Fink, S..Schwarze, F.W.M.R., 2004, 'Detection of decay in trees with stress waves and interpretation of acoustic tomograms', Arboricultural Journal 28, pp.3~19. https://doi.org/10.1080/03071375.2004.9747399
  23. Richard W.H..James R.C..Nelda, P.M., 2021, 「수목관리학」, 바이오사이언스출판, p.417.
  24. Smiley, E.T.,.Lilly, S., 2001. Best Management Practices, International Society of Arboriculture, pp.1~22.
  25. Tallavo, F..Cascante, G..Pandey, M.D., 2012, 'A novel methodology for condition assessment of wood poles using ultrasonic testing', NDT&E International 52, pp.149~156. https://doi.org/10.1016/j.ndteint.2012.08.002
  26. Tree Care Industry Association, Inc., 2013, ANSI A300 Supplemental Support Systems, Tree Care Industry Association, Inc., pp.1~37.
  27. Wang, X..Allison, R.B., 2008, 'Decay detection in red oak trees using a combination of visual inspection, acoustic testing, and resistance microdrilling', Arboriculure & Urban forestry 34(1), pp.1~4. https://doi.org/10.48044/jauf.2008.001
  28. Wonn, H.T..O'Hara, K.L., 2001, 'Height:Diameter Ratios and Stability Relationships for Four Northern Rocky Mountain Tree Species', Western Journal of Applied Forestry 16(2), pp.87~94. https://doi.org/10.1093/wjaf/16.2.87