DOI QR코드

DOI QR Code

High-performance filtering power divider based on air-filled substrate integrated waveguide technology

  • Ali-Reza Moznebi (Microwave & Millimeter-Wave Research Group, Department of Electrical Engineering, Shahid Bahonar University of Kerman) ;
  • Kambiz Afrooz (Microwave & Millimeter-Wave Research Group, Department of Electrical Engineering, Shahid Bahonar University of Kerman) ;
  • Mostafa Danaeian (Department of Electrical Engineering, Vali-e-Asr University of Rafsanjan)
  • Received : 2021.12.07
  • Accepted : 2022.03.29
  • Published : 2023.04.20

Abstract

A filtering power divider based on air-filled substrate-integrated waveguide (AFSIW) technology is proposed in this study. The AFSIW structure is used in the proposed filtering power divider for substantially reducing the transmission losses. This structure occupies a large area because of the use of air as a dielectric instead of typical dielectric materials. A filtering power divider provides power division and frequency selectivity simultaneously in a single device. The proposed filtering power divider comprises three AFSIW cavities. The filtering function is achieved using symmetrical inductive posts. The input and output ports of the proposed circuit are realized by directly connecting coaxial lines to the AFSIW cavities. This transition from the coaxial line to the AFSIW cavity eliminates the additional transitions, such as AFSIW-SIW and SIW-conductor-backed coplanar waveguide, applied in existing AFSIW circuits. The proposed power divider with a second-order bandpass filtering response is fabricated and measured at 5.5 GHz. The measurement results show that this circuit has a minimum insertion loss of 1 dB, 3-dB fractional bandwidth of 11.2%, and return loss exceeding 11 dB.

Keywords

References

  1. A.-R. Moznebi, M. Danaeian, E. Zarezadeh, and K. Afrooz, Ultracompact two-way and four-way siw/hmsiw power dividers loaded by complementary split-ring resonators, Int. J. RF Microw. Comput.-Aided Eng. 29 (2019), no. 10, e21878.
  2. D. Deslandes and K. Wu, Integrated microstrip and rectangular waveguide in planar form, IEEE Microw. Wirel. Components Lett. 11 (2001), no. 2, 68-70. https://doi.org/10.1109/7260.914305
  3. H. Kang and S. Lim, Enhanced-gain planar substrate-integrated waveguide cavity-backed slot antenna with rectangular slot window on superstrate, ETRI J. 36 (2014), no. 6, 1062-1065. https://doi.org/10.4218/etrij.14.0213.0550
  4. A.-R. Moznebi and K. Afrooz, Compact power divider based on half mode substrate integrated waveguide (hmsiw) with arbitrary power dividing ratio, Int. J. Microw. Wirel. Technol. 9 (2017), no. 3, 515-521. https://doi.org/10.1017/S1759078716000544
  5. F. Parment, A. Ghiotto, T.-P. Vuong, J.-M. Duchamp, and K. Wu, Air-filled substrate integrated waveguide for low-loss and high power-handling millimeter-wave substrate integrated circuits, IEEE Trans. Microw. Theory Tech. 63 (2015), no. 4, 1228-1238. https://doi.org/10.1109/TMTT.2015.2408593
  6. N.-H. Nguyen, A. Ghiotto, T. Martin, A. Vilcot, K. Wu, and T.-P. Vuong, Fabrication-tolerant broadband air-filled siw isolated power dividers/combiners, IEEE Trans. Microw. Theory Tech. 69 (2020), no. 1, 603-615.
  7. F. Parment, A. Ghiotto, T.-P. Vuong, J.-M. Duchamp, and K. Wu, Ka-band compact and high-performance bandpass filter based on multilayer air-filled siw, Electron. Lett. 53 (2017), no. 7, 486-488. https://doi.org/10.1049/el.2016.4399
  8. F. Parment, A. Ghiotto, T.-P. Vuong, J.-M. Duchamp, and K. Wu, Millimetre-wave air-filled substrate integrated waveguide slot array antenna, Electron. Lett. 53 (2017), no. 11, 704-706. https://doi.org/10.1049/el.2017.0102
  9. F. Parment, A. Ghiotto, T.-P. Vuong, J.-M. Duchamp, and K. Wu, Air-to-dielectric-filled two-hole substrate-integrated waveguide directional coupler, IEEE Microw. Wirel. Components Lett. 27 (2017), no. 7, 621-623. https://doi.org/10.1109/LMWC.2017.2711525
  10. F. Parment, A. Ghiotto, T.-P. Vuong, J.-M. Duchamp, and K. Wu, Double dielectric slab-loaded air-filled siw phase shifters for high-performance millimeter-wave integration, IEEE Trans. Microw. Theory Tech. 64 (2016), no. 9, 2833-2842. https://doi.org/10.1109/TMTT.2016.2590544
  11. M. Danaeian, A.-R. Moznebi, and K. Afrooz, A novel super compact half-mode substrate-integrated waveguide filter using modified complementary split-ring resonator, Int. J. RF Microw. Comput.-Aided Eng. 29 (2019), no. 6, e21709.
  12. D. Eom and S. Kahng, Fully printed dual-band power divider miniaturized by crlh phase-shift lines, ETRI J. 35 (2013), no. 1, 150-153. https://doi.org/10.4218/etrij.13.0212.0131
  13. E. Moradi, A.-R. Moznebi, K. Afrooz, and M. Movahhedi, Four-way gysel power divider/combiner with back-to-back configuration for dual-band operation, Int. J. Microw. Wirel. Technol. 10 (2018), no. 2, 265-270. https://doi.org/10.1017/S1759078717001064
  14. L. L. Yun, G.-L. Dai, and K. Li, A novel unequal broadband out-of-phase power divider using dspsls, ETRI J. 36 (2014), no. 1, 116-123. https://doi.org/10.4218/etrij.14.0113.0125
  15. Y.-L. Lu, S. Wang, G.-L. Dai, and K. Li, Novel filtering power divider with external isolation resistors, ETRI J. 37 (2015), no. 1, 61-65. https://doi.org/10.4218/etrij.15.0114.0058
  16. A.-R. Moznebi, K. Afrooz, M. Danaeian, and P. Mousavi, Four-way filtering power divider using siw and eighth-mode siw cavities with ultrawide out-of-band rejection, IEEE Microw. Wirel. Components Lett. 29 (2019), no. 9, 586-588. https://doi.org/10.1109/LMWC.2019.2931115
  17. M. Danaeian, A.-R. Moznebi, K. Afrooz, and H. Hakimi, Miniaturised equal/unequal siw power divider with bandpass response loaded by csrrs, Electron. Lett. 52 (2016), no. 22, 1864-1866. https://doi.org/10.1049/el.2016.2203
  18. M. Danaeian, A.-R. Moznebi, K. Afrooz, and A. Hakimi, Miniaturized filtering siw power divider with arbitrary power-dividing ratio loaded by open complementary split-ring resonators, Int. J. Microw Wirel. Technol. 9 (2017), no. 9, 1827-1832. https://doi.org/10.1017/S175907871700071X
  19. Y.-Q. Gao, W. Shen, L. Wu, and X.-W. Sun, Substrate integrated waveguide fpwd with quasi-elliptic response, Electron. Lett. 55 (2019), no. 1, 41-43. https://doi.org/10.1049/el.2018.6836
  20. X. Wang and X.-W. Zhu, Quarter-mode circular cavity substrate integrated waveguide filtering power divider with via-holes perturbation, Electron. Lett. 53 (2017), no. 12, 791-793. https://doi.org/10.1049/el.2017.0697
  21. I. S. S. Lima, F. Parment, A. Ghiotto, T.-P. Vuong, and K. Wu, Broadband dielectric-to-half-mode air-filled substrate integrated waveguide transition, IEEE Microw. Wirel. Components Lett. 26 (2016), no. 6, 383-385. https://doi.org/10.1109/LMWC.2016.2555943
  22. F. Parment, A. Ghiotto, T.-P. Vuong, L. Carpentier, and K. Wu, Substrate integrated suspended line to air-filled siw transition for high-performance millimeter-wave multilayer integration, (IEEE MTT-S International Microwave Symposium, Honololu, HI, USA), June 2017, pp. 719-722.
  23. D. M. Pozar, Microwave engineering, John wiley & sons, 2011.
  24. F. Xu and K. Wu, Guided-wave and leakage characteristics of substrate integrated waveguide, IEEE Trans. Microw. Theory Techn. 53 (2005), no. 1, 66-73. https://doi.org/10.1109/TMTT.2004.839303
  25. W. P. Ayres, P. H. Vartanian, and A. L. Helgesson, Propagation in dielectric slab loaded rectangular waveguide, IRE Trans. Microw. Theory Tech. 6 (1958), no. 2, 215-222. https://doi.org/10.1109/TMTT.1958.1124541
  26. H.-Y. Li, J.-X. Xu, and X. Y. Zhang, Substrate integrated waveguide filtering rat-race coupler based on orthogonal degenerate modes, IEEE Trans. Microw. Theory Tech. 67 (2018), no. 1, 140-150.
  27. R. J. Cameron, Advanced coupling matrix synthesis techniques for microwave filters, IEEE Trans. Microw. Theory Tech. 51 (2003), no. 1, 1-10. https://doi.org/10.1109/TMTT.2002.806937
  28. J.-S. G. Hong and M. J. Lancaster, Microstrip filters for rf/-microwave applications, Vol. 167, John Wiley & Sons, 2004.