DOI QR코드

DOI QR Code

Novel construction of quasi-cyclic low-density parity-check codes with variable code rates for cloud data storage systems

  • Vairaperumal Bhuvaneshwari (Department of Electronics and Communications Engineering, B. S. Abdur Rahman Crescent Institute of Science & Technology, Ringgold standard institution) ;
  • Chandrapragasam Tharini (Department of Electronics and Communications Engineering, B. S. Abdur Rahman Crescent Institute of Science & Technology, Ringgold standard institution)
  • Received : 2022.02.08
  • Accepted : 2022.08.07
  • Published : 2023.06.20

Abstract

This paper proposed a novel method for constructing quasi-cyclic low-density parity-check (QC-LDPC) codes of medium to high code rates that can be applied in cloud data storage systems, requiring better error correction capabilities. The novelty of this method lies in the construction of sparse base matrices, using a girth greater than 4 that can then be expanded with a lift factor to produce high code rate QC-LDPC codes. Investigations revealed that the proposed large-sized QC-LDPC codes with high code rates displayed low encoding complexities and provided a low bit error rate (BER) of 10-10 at 3.5 dB Eb/N0 than conventional LDPC codes, which showed a BER of 10-7 at 3 dB Eb/N0. Subsequently, implementation of the proposed QC-LDPC code in a softwaredefined radio, using the NI USRP 2920 hardware platform, was conducted. As a result, a BER of 10-6 at 4.2 dB Eb/N0 was achieved. Then, the performance of the proposed codes based on their encoding-decoding speeds and storage overhead was investigated when applied to a cloud data storage (GCP). Our results revealed that the proposed codes required much less time for encoding and decoding (of data files having a 10 MB size) and produced less storage overhead than the conventional LDPC and Reed-Solomon codes.

Keywords

References

  1. R. Nachiappan, J. Bahman, C. Rodrigo, and M. Kenan, Cloud storage reliability for big data applications: A state-of-the-art survey, J Netw Comput Appl. 97 (2017), 35-47. https://doi.org/10.1016/j.jnca.2017.08.011
  2. C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and S. Yekhanin, Erasure coding in windows azure storage, USENIX Annual Technical Conference ATC. 2012, pp. 15-26.
  3. Y. Wei, Y. W. Foo, K. C. Lim, and F. Chen, The auto-configurable LDPC codes for distributed storage, (IEEE 17th International Conference on Computational Science and Engineering, Chengdu, China), 2014, pp. 1332-1338.
  4. S. Ghemawat, H. Gobioff, and S. Leung, The google file system, (Proceedings of the ACM Symposium on Operating Systems Principles, Bolton Landing, NY, USA), 2003, pp. 29-43.
  5. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, Dynamo: Amazon's highly available key-value store, (Proceedings of twenty-first ACM SIGOPS symposium on Operating systems principles, Stevenson WA, USA), 2007, pp. 205-220.
  6. D. Borthakur, The Hadoop distributed file system: Architecture and design, 2009.
  7. Facebook's erasure coded hadoop distributed file system (HDFS-RAID).
  8. H. Weatherspoon and J. D. Kubiatowicz, Erasure coding vs. replication: A quantitative comparison, In Peer- to-peer systems, Springer, 2002, 328-337.
  9. F. Fikes, Storage architecture and challenges, (Proceedings of the 2010 Google Faculty Summit, CA, USA), July 29, 2010.
  10. I. S. Reed and G. Solomon, Polynomial codes over certain finite fields, Soc. Ind. Appl. Math. 8 (1960), 300-304. https://doi.org/10.1137/0108018
  11. M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and V. Stemann, Practical loss- resilient codes, (29th Annual ACM Symposium on Theory of Computing, El Paso, TX, USA), 1997, pp. 150-159.
  12. W. Yongmei, C. Fengmin, and L. K. Cher, Large LDPC codes for big data storage, (Proceedings of the ASE Big Data & Social Informatics, Kaohsiung, Taiwan), 2015, pp. 1-6.
  13. Y. Wei and Y. W. Foo, A cost-effective and reliable cloud storage, (IEEE International Conference on Cloud Computing, Anchorage, AK< USA), 2014, pp. 938-939.
  14. Y. Wei and F. Chen, expanCodes: Tailored LDPC codes for big data storage, (IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, Auckland, NEw Zealand), 2016, pp. 620-625.
  15. R. Sun, X. Cai, J. Liu, and K. S. Kwak, Distributed SR-LDPC codes over multiple- access relay channel and its applications in cloud storage, Concurrency Comput Pract Experience. 27 (2014), 2064-2077. https://doi.org/10.1002/cpe.3405
  16. J. S. Plank and M. G. Thomason, A practical analysis of lowdensity parity-check erasure codes for wide-area storage applications, (DSN-04: International Conference on Dependable Systems and Networks, Florence, Italy), 2004, pp. 115-124.
  17. B. Gaidioz, B. Koblitz, and N. Santos, Exploring high performance distributed file storage using LDPC codes, J. Parallel. 33 (2007), 264-274. https://doi.org/10.1016/j.parco.2007.02.003
  18. S. Hongwei, L. Jingfen, and B. Kumar, Low complexity LDPC codes for partial response channels, IEEE Glob. Commun. Conf. 2 (2002), 1294-1299.
  19. J. S. Plank and L. Collins, Small parity-check erasure codes - Exploration and observations, (International Conference on Dependable Systems and Networks, Yokohama, Japan), 2005, pp. 326-335.
  20. W. Yongmei and C. Fengmin, Guided systematic random LDPC for distributed storage system, (ICIT 2017: Proceedings of the 2017 International Conference on Information Technology, Singapore), 2017, pp. 355-359.
  21. C. -W. Sham, X. Chen, W. M. Tam, Y. Zhao, and F.C. M. Lau, A layered QC-LDPC decoder architecture for high-speed communication system, (IEEE Asia Pacific Conference on Circuits and Systems, Kaohsiung, Taiwan), 2012, pp. 475-478.
  22. Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti, and K. Flautner, Soda: A low-power architecture for software radio, (Proceedings of the 33rd Annual International Symposium on Computer Architecture, Boston, MA, USA), 2006. https://doi.org/10.1109/ISCA.2006.37
  23. S. G. Harihara and J. M. Balaji, SpreadStore: A LDPC erasure code scheme for distributed storage system, (International Conference on Data Storage and Data Engineering, Bangalore, India), 2010, pp. 154-158.
  24. S. Mukherjee and M. Kaufmann, Error coding techniques, In Architecture design for soft errors, Elsevier, 2008, 161-206.
  25. S. Vafi and N. R. Majid, Combinatorial design-based quasicyclic LDPC codes with girth eight, Digit Commun Netw. 4 (2018), 296-300. https://doi.org/10.1016/j.dcan.2018.01.001
  26. V. Chouhan and S. K. Peddoju, Investigation of pptimal data encoding parameters based on user preference for cloud storage, IEEE Access 8 (2020), 75105-75118. https://doi.org/10.1109/ACCESS.2020.2987999