DOI QR코드

DOI QR Code

An improved sparsity-aware normalized least-mean-square scheme for underwater communication

  • Anand, Kumar (Department of Electronics and Communication Engineering, National Institute of Technology Jamshedpur) ;
  • Prashant Kumar (Department of Electronics and Communication Engineering, National Institute of Technology Jamshedpur)
  • Received : 2022.01.28
  • Accepted : 2022.06.13
  • Published : 2023.06.20

Abstract

Underwater communication (UWC) is widely used in coastal surveillance and early warning systems. Precise channel estimation is vital for efficient and reliable UWC. The sparse direct-adaptive filtering algorithms have become popular in UWC. Herein, we present an improved adaptive convex-combination method for the identification of sparse structures using a reweighted normalized leastmean-square (RNLMS) algorithm. Moreover, to make RNLMS algorithm independent of the reweighted l1-norm parameter, a modified sparsity-aware adaptive zero-attracting RNLMS (AZA-RNLMS) algorithm is introduced to ensure accurate modeling. In addition, we present a quantitative analysis of this algorithm to evaluate the convergence speed and accuracy. Furthermore, we derive an excess mean-square-error expression that proves that the AZA-RNLMS algorithm performs better for the harsh underwater channel. The measured data from the experimental channel of SPACE08 is used for simulation, and results are presented to verify the performance of the proposed algorithm. The simulation results confirm that the proposed algorithm for underwater channel estimation performs better than the earlier schemes.

Keywords

Acknowledgement

The authors are grateful for the funding support of the Science and Engineering Research Board (SERB), Department of Science & Technology (DST), Government of India, vide file no. SRG/2020/002486.

References

  1. P. Qarabaqi and M. Stojanovic, Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels, IEEE J. Ocean. Eng. 38 (2013), no. 4, 701-717. https://doi.org/10.1109/JOE.2013.2278787
  2. Y. Zhang, Y. V. Zakharov, and J. Li, Soft-decision-driven sparse channel estimation and turbo equalization for MIMO underwater acoustic Communications, IEEE Access 6 (2018), 4955-4973. https://doi.org/10.1109/ACCESS.2018.2794455
  3. Y. Tian, X. Han, J. Yin, and Y. Li, Adaption penalized complex LMS for sparse under-ice acoustic channel estimations, IEEE Access 6 (2018), 63214-63222.
  4. Z. Qin, J. Tao, and X. Han, Sparse direct adaptive equalization based on proportionate recursive least squares algorithm for multiple-input multiple-output underwater acoustic communications, J. Acous. Soc. Am. 148 (2020), no. 4, 2280-2287. https://doi.org/10.1121/10.0002276
  5. P. Kumar, V. K. Trivedi, and P. Kumar, Recent trends in multicarrier underwater acoustic communications, (IEEE Underwater Technology, Chemmai, India), Feb. 2015, pp. 1-8.
  6. L. Liu, D. Sun, and Y. Zhang, A family of sparse group Lasso RLS algorithms with adaptive regularization parameters for adaptive decision feedback equalizer in the underwater acoustic communication system, Phys. Commun. 23 (2017), 114-124. https://doi.org/10.1016/j.phycom.2017.03.005
  7. K. Pelekanakis and M. Chitre, Comparison of sparse adaptive filters for underwater acoustic channel equalization/estimation, (IEEE International Conference on Communication Systems, Singapore), Nov. 2010, pp. 395-399.
  8. S. Haykin, Adaptive filter theory, Pearson Education, 2014.
  9. B. Widrow and S. D. Stearns, Adaptive signal processing, Pearson, India, 2016.
  10. E. J. Candes, M. B. Wakin, and S. P. Boyd, Enhancing sparsity by reweighted l1 minimization, J. Fourier Anal. Appl. 14 (2008), no. 5-6, 877-905. https://doi.org/10.1007/s00041-008-9045-x
  11. D. L. Duttweiler, Proportionate normalized least-mean-squares adaptation in echo cancelers, IEEE Trans. Speech Audio Process. 8 (2000), no. 5, 508-518. https://doi.org/10.1109/89.861368
  12. K. Kumar, R. Pandey, M. L. N. S. Karthik, S. S. Bhattacharjee, and N. V. George, Robust and sparsity-aware adaptive filters: A Review, Signal Process. 189 (2021). https://doi.org/10.1016/j. sigpro.2021.108276
  13. S. S. Bhattacharjee, D. Ray, and N. V. George, Adaptive modified versoria zero attraction least mean square algorithms, IEEE Trans. Circ. Syst. II: Express Briefs 67 (2020), no. 12, 3602-3606.
  14. M. N. S. Jahromi, M. S. Salman, A. Hocanin, and O. Kukrer, Mean-square deviation analysis of the zero-attracting variable step-size LMS algorithm, Signal, Image Video Process. 11 (2017r), no. 3, 533-540. https://doi.org/10.1007/s11760-016-0991-5
  15. Y. Chen, Y. Gu, and A. O. Hero, Sparse LMS for system identification, (IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan), 2009, pp. 3125-3128.
  16. O. Taheri and S. A. Vorobyov, Reweighted l1-norm penalized LMS for sparse channel estimation and its analysis, Signal Process. 104 (2014), 70-79.
  17. X. Cao, F. Tong, B. Li, and S. Zheng, Experimental evaluation of norm constraint sparsity exploitation for shallow water acoustic communication, Appl. Acoust. 180 (2021), 108111.
  18. C. Wang, Y. Zhang, Y. Wei, and N. Li, A new l0-LMS algorithm with adaptive zero attractor, IEEE Commun. Lett. 19 (2015), no. 12, 2150-2153. https://doi.org/10.1109/LCOMM.2015.2490665
  19. F. Y. Wu, Y. H. Zhou, F. Tong, and R. Kastner, Simplified p-norm-like constraint LMS algorithm for efficient estimation of underwater acoustic channels, J. Mar. Sci. Appl. 12 (2013), no. 2, 228-234. https://doi.org/10.1007/s11804-013-1189-7
  20. Y. Tian, X. Han, J. Yin, H. Chen, and Q. Liu, An improved least mean square/fourth direct adaptive equalizer for under-water acoustic communications in the Arctic, Acta Oceanol. Sin. 39 (2020), no. 9, 133-139.
  21. D. Kari, I. Marivani, F. Khan, M. O. Sayin, and S. S. Kozat, Robust adaptive algorithms for underwater acoustic channel estimation and their performance analysis, Digit. Signal Process. A Rev. J. 68 (2017), 57-68. https://doi.org/10.1016/j.dsp.2017.05.006
  22. S. Zhou, N. Xiu, Y. Wang, L. Kong, and H. Qi, A null-spacebased weighted l1 minimization approach to compressed sensing, Inf. Infer. 5 (2016), no. 1, 76-102.
  23. A. Al-Shabili, L. Weruaga, and S. Jimaa, Adaptive sparsity tradeoff for ℓ1-constraint NLMS algorithm, (IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China), 2016, pp. 4707-4711.
  24. Y. Li, Y. Wang, and T. Jiang, Sparse-aware set-membership NLMS algorithms and their application for sparse channel estimation and echo cancelation, AEU - Int. J. Electron. Commun. 70 (2016), no. 7, 895-902. https://doi.org/10.1016/j.aeue.2016.04.001
  25. Y. Wang and Y. Li, Sparse multipath channel estimation using norm combination constrained set-membership NLMS algorithms, Wirel. Commun. Mob. Comput. 2017 (2017). https://doi.org/10.1155/2017/8140702
  26. S. Zhang and J. Zhang, Set-membership NLMS algorithm with robust error bound, IEEE Trans. Circ. Syst. II: Express Briefs 61 (2014), no. 7, 536-540.
  27. R. Pogula, T. K. Kumar, and F. Albu, Robust sparse normalized LMAT algorithms for adaptive system identification under impulsive noise environments, Circ. Syst. Signal Process. 38 (2019), no. 11, 5103-5134. https://doi.org/10.1007/s00034-019-01111-3
  28. C. H. Lee, B. D. Rao, and H. Garudadri, Proportionate adaptive filtering algorithms derived using an iterative reweighting framework, IEEE/ACM Trans. Audio Speech Lang. Process. 29 (2021), 171-186. https://doi.org/10.1109/TASLP.2020.3038526
  29. K. Pelekanakis and M. Chitre, New sparse adaptive algorithms based on the natural gradient and the L0-norm, IEEE J. Ocean. Eng. 38 (2013), no. 2, 323-332. https://doi.org/10.1109/JOE.2012.2221811
  30. Z. Jin, Y. Li, and Y. Wang, An enhanced set-membership PNLMS algorithm with a correntropy induced metric constraint for acoustic channel estimation, Entropy 19 (2017), no. 6. https://doi.org/10.3390/e19060281
  31. I. Hassani, M. Arezki, and A. Benallal, A novel set membership fast NLMS algorithm for acoustic echo cancellation, Appl. Acoust. 163 (2020). https://doi.org/10.1016/j.apacoust.2020.107210
  32. Y. Li, Y. Wang, and L. Sun, A flexible sparse set-membership NLMS algorithm for multi-path and acoustic echo channel estimations, Appl. Acoust. 148 (2019), 390-398. https://doi.org/10.1016/j.apacoust.2019.01.002
  33. J. Lim, H. Pang, and K. Lee, Time delay estimation based on log-sum and l p -norm penalized minor component analysis, J. Acoust. Soc. Am. 143 (2018), no. 6, 3979-3984. https://doi.org/10.1121/1.5042353
  34. A. Kumar and P. Kumar, Underwater acoustic channel estimation via basic-CS and modified-CS using 2-D frequency sampling, (IEEE International Conference on Advanced Communication Technologies and Signal Processing), 2020, pp. 1-6.
  35. O. Macchi, N. Bershad, and M. Mboup, Steady-state superiority of lms over ls for time-varying line enhancer in noisy environment, IEE Proc. F Radar Signal Process. 138 (1991), no. 4, 354-360. https://doi.org/10.1049/ip-f-2.1991.0046
  36. L. Horowitz and K. Senne, Performance advantage of complex LMS for controlling narrow-band adaptive arrays, IEEE Trans. Acoust. Speech Signal Process. 29 (1981), no. 3.
  37. Y. Li and M. Hamamura, An improved proportionate normalized least-mean-square algorithm for broadband multipath channel estimation, The Sci. World J. 2014 (2014), 1-9.
  38. M. S. Ahmed, N. S. Mohd Shah, Y. Y. Al-Aboosi, M. S. M. Gismalla, M. F. L. Abdullah, Y. A. Jawhar, and M. Balfaqih, Filter orthogonal frequency-division multiplexing scheme based on polar code in underwater acoustic communication with nonGaussian distribution noise, ETRI J. 43 (2021), no. 2, 184-196. https://doi.org/10.4218/etrij.2019-0564
  39. A. Kumar and P. Kumar, Pilot-assisted maximum-likelihood estimation for underwater acoustic communication, IEEE Int. Conf. Comput. Commun. Secur. 1 (2020), 5-10.
  40. Y. Zhang, R. Venkatesan, O. A. Dobre, and C. Li, Efficient estimation and prediction for sparse time-varying underwater acoustic channels, IEEE J. Ocean. Eng. 45 (2020), no. 3, 1112-1125. https://doi.org/10.1109/JOE.2019.2911446