DOI QR코드

DOI QR Code

Impact of the Spectral Linewidth of a Pseudorandom Binary Sequence (PRBS)-Modulated Laser on Stimulated Brillouin Scattering and Beam Quality

  • Received : 2023.04.10
  • Accepted : 2023.10.23
  • Published : 2023.12.25

Abstract

This study focuses on investigating the impact of the spectral linewidth of a seed laser in a master-oscillator power amplifier (MOPA) configuration on stimulated Brillouin scattering and the beam quality of the output diffracted by a grating. To conduct the study, a distributed feedback (DFB) laser is modulated in a pseudorandom binary sequence (PRBS) and amplified by a two-stage Yb-doped fiber amplifier to achieve an output power of over 1 kW. The spectral linewidth of the seed laser is systematically varied from 1 to 12 GHz in the frequency domain by varying the PRBS modulation parameters. The experimental results reveal a tradeoff between suppressing stimulated Brillouin scattering and enhancing beam quality with increased spectral linewidth. Therefore, the study provides valuable insights into optimizing spectral beam combining to achieve high beam quality and scalable power upgrade in fiber lasers.

Keywords

Acknowledgement

This work was supported by the Agency For Defense Development by the Korean Government (UD160018RD).

References

  1. Y. Ye, B. Yang, P. Wang, L. Zeng, X. Xi, C. Shi, H. Zhang, X. Wang, P. Zhou, and X. Xu, "Industrial 6 kW high-stability single-stage all-fiber laser oscillator based on conventional large mode area ytterbium-doped fiber," Laser Phys. 31, 035104 (2021).
  2. K. Ludewigt, A. Liem, U. Stuhr, and M. Jung, "High-power laser development for laser weapons," Proc. SPIE 11162, 1116207 (2019).
  3. M. N. Zervas, "High power ytterbium-doped fiber lasers-fundamentals and applications," Int. J. Mod. Phys. B 28, 1442009 (2014).
  4. Y. Wang, Y. Sun, W. Peng, Y. Feng, J. Wang, Y. Ma, Q. Gao, R. Zhu, and C. Tang, "3.25kW all-fiberized and polarization-maintained Yb-doped amplifier with a 20GHz linewidth and near-diffraction-limited beam quality," Appl. Opt. 60, 6331-6336 (2021). https://doi.org/10.1364/AO.431081
  5. P. Zhou, X. Wang, H. Xiao, Y. Ma, and J. Chen, "Review on recent progress on Yb-doped fiber laser in a variety of oscillation spectral ranges," Laser Phys. 22, 823-831 (2012). https://doi.org/10.1134/S1054660X12050404
  6. T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE J. Sel. Top. Quantum Electron. 11, 567-577 (2005). https://doi.org/10.1109/JSTQE.2005.850241
  7. C. C. Cook and T. Y. Fan, "Spectral beam combining of Yb-doped fiber lasers in an external cavity," in Advanced Solid State Lasers (Optica Publishing Group, 1999), paper PD5.
  8. M. Strecker, M. Plotner, F.Stutzki, T.Walbaum, S.Ehrhardt, T. Benkenstein, U. Zeitner, T. Schreiber, R. Eberhardt, A. Tunnermann, U. Stuhr, M. Jung, and K. Ludewigt, "Highly efficient dual-grating 3-channel spectral beam combining of narrow-linewidth monolithic cw Yb-doped fiber amplifiers up to 5.5 kW," Proc. SPIE 10897, 108970E (2019).
  9. S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. F. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. Weiss, "100-kW Coherently combined Nd:YAG MOPA laser array," in Frontiers in Optics 2009 (Optica Publishing Group, 2009), paper FThD2.
  10. Z. Xie, S. Fu, Q. Sheng, W. Shi, J. Yao, "Analysis of thermal effects in high power Yb doped fiber amplifier by distributed pumping," Proc. SPIE 10457, 104573D (2017).
  11. S. K. Kalyoncu, B. Mete, and A. Yeniay, "Diode-pumped triple-clad fiber MOPA with an output power scaling up to 4.67 kW," Opt. Lett. 45, 1870-1873 (2020). https://doi.org/10.1364/OL.387230
  12. Y. Panbiharwala, A. Vasant Harish, Y. Feng, D. Venkitesh, J. Nilsson, and B. Srinivasan, "Stimulated Brillouin scattering mitigation using optimized phase modulation waveforms in high power narrow linewidth Yb-doped fiber amplifiers," Opt. Express 29, 17183-17200 (2021). https://doi.org/10.1364/OE.425159
  13. M. Engholm, M. Tuggle, C. Kucera, T. Hawkins, P. Dragic, and J. Ballato, "On the origin of photodarkening resistance in Yb-doped silica fibers with high aluminum concentration," Opt. Mater. Express 11, 115-126 (2021). https://doi.org/10.1364/OME.413766
  14. Y. Ye, B. Yang, C. Shi, X. Xi, H. Zhang, X. Wang, P. Zhou, and X. Xu, "Towards power improvement of all-Fiber laser oscillators with 30 Μm-core Yb-doped fibers by suppressing transverse mode instability," Laser Phys. Lett. 17, 085106 (2020).
  15. E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-541 (1972). https://doi.org/10.1063/1.1654249
  16. S. Song, A. Jung, and K. Oh, "High-temperature sensitivity in stimulated Brillouin scattering of 1060 nm single-mode fibers," Sensors 19, 4731 (2019).
  17. O. A. Nieves, M. D. Arnold, M. J. Steel, M. K. Schmidt, and C. G. Poulton, "Noise and pulse dynamics in backward stimulated Brillouin scattering" Opt. Express 29, 3132-3146 (2021). https://doi.org/10.1364/OE.414420
  18. A. Kobyakov, M. Sauer, and D. Chowdhury, "Stimulated Brillouin scattering in optical fibers," Adv. Opt. Photonics 2, 1-59 (2010). https://doi.org/10.1364/AOP.2.000001
  19. T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, "3.5 kW bi-directionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser," Laser Phys. 28, 105101 (2018).
  20. B. Li, M, Liu, Y. Yang, Y. Xian, B. He, and J. Zhou, "Effective Brillouin gain spectra broadening for SBS suppression based on Pseudo random bit sequence phase modulation in fiber system," IEEE Photonics. J. 13, 7100105 (2021).
  21. E. Lichtman, R. G. Waarts, and A. A. Friesem, "Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers," J. Light. Technol. 7, 171-174 (1989). https://doi.org/10.1109/50.17750
  22. M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley III, D. J. DiGiovanni, and A. H. McCurdy, "11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber," Proc. SPIE 6873, 68730N (2008).
  23. H. Xiao, G. Ren, Y. Dong, H. Li, S. Xiao, B. Wu, and S. Jian, "A numerical analysis of GeO2-doped multi-step index single-mode fiber for stimulated Brillouin scattering," J. Opt. 20, 065701 (2018).
  24. M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, B. He, and J. Zhou, "1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap," Sci. Rep. 10, 629 (2020).
  25. A. Flores, C. Robin, A. Lanari, and I. Dajani, "Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers," Opt. Express 22, 17735- 17744 (2014). https://doi.org/10.1364/OE.22.017735
  26. C. Jauregui, T. Eidam, J. Limpert, and A. Tunnermann, "Impact of modal interference on the beam quality of high-power fiber amplifiers," Opt. Express 19, 3258-3271 (2011). https://doi.org/10.1364/OE.19.003258
  27. T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally beam-combined fiber lasers for high-average-power applications," IEEE J. Sel. Top. Quantum Electron 13, 487-497 (2007). https://doi.org/10.1109/JSTQE.2007.896568
  28. A. Jung, S. Song, S. Kim, and K. Oh, "Numerical analyses of a spectral beam combining multiple Yb-doped fiber lasers for optimal beam quality and combining efficiency," Opt. Express 30, 13305-13319 (2022). https://doi.org/10.1364/OE.455728
  29. F. Tian, H. Yan, L. Chen, Y. Ye, J. Li, J. Luo, and F. Lu, "Investigation on the influence of spectral linewidth broadening on beam quality in spectral beam combination," Proc. SPIE 9255, 92553N (2015).
  30. B. M. Anderson, A. Flores, and I. Dajani, "Filtered pseudo random modulated fiber amplifier with enhanced coherence and nonlinear suppression," Opt. Express 25, 17671-17682 (2017). https://doi.org/10.1364/OE.25.017671
  31. Y. Zheng, Y. Yang, J. Wang, M. Hu, G. Liu, X. Zhao, X. Chen, K. Liu, C. Zhao, B. He, and J. Zhao, "10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation," Opt. Express 24, 12063-12071 (2016). https://doi.org/10.1364/OE.24.012063
  32. I. Kim, S. So, J. Mun, K. H. Lee, J. H. Lee, T. Lee, and J. Rho, "Optical characterizations and thermal analyses of HfO2/SiO2 multilayered diffraction gratings for high-power continuous wave laser," J. Phys. Photonics 2, 025004 (2020).
  33. P. G. Sibley, R. L. Ward, L. E. Roberts, S. P. Francis, and D. A. Shaddock, "Crosstalk reduction for multi-channel optical phase metrology," Opt. Express 28, 10400-10424 (2020). https://doi.org/10.1364/OE.388381
  34. C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, "A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light," Opt. Express 20, 21196-21213 (2012). https://doi.org/10.1364/OE.20.021196
  35. I. Gursoy and S. Tunc, "The effects of M2 factor on steel materials," Proc. SPIE 11539, 115390I (2020).
  36. T. S. Ross, Laser Beam Quality Metrics (SPIE Press, USA, 2013).
  37. G. Yang, L. Liu, Z. Jiang, J. Guo, and T. F. Wang, "The effect of beam quality factor for the laser beam propagation through turbulence," Optik 156, 148-154 (2018). https://doi.org/10.1016/j.ijleo.2017.10.119
  38. P. Madasamy, D. R. Jander, C. D. Brooks, T. H. Loftus, A. M. Thomas, P. Jones, and E. C. Honea, "Dual-grating spectral beam combination of high-power fiber lasers," IEEE J. Sel. Top. Quantum Electron. 15, 337-343 (2009). https://doi.org/10.1109/JSTQE.2008.2012266
  39. N. A. Naderi, I. Dajani, and A. Flores, "High-efficiency, kilowatt 1034 nm all-fiber amplifier operating at 11 pm linewidth," Opt. Lett. 41, 1018-1021 (2016). https://doi.org/10.1364/OL.41.001018
  40. W. Y. W. Lim, K. W. Seah, Y. E. Ye, B. S. Tan, and C. P. Seah, "Wavelength flexible, kW-level narrow linewidth fibre laser based on 7 GHz PRBS phase modulation," Proc. SPIE 11260, 11126006 (2020).
  41. Y. Wang, Y. Feng, X. Wang, H. Yan, J. Peng, W. Peng, Y. Sun, Y. Ma, and C. Tang, "6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control," Appl. Opt. 56, 2760-2765 (2017). https://doi.org/10.1364/AO.56.002760
  42. Y. Wang, Y. Sun, W. Peng, Y. Feng, J. Wang, Y. Ma, Q. Gao, R. Zhu, and C. Tang, "3.25kW all-fiberized and polarization-maintained Yb-doped amplifier with a 20GHz linewidth and near-diffraction-limited beam quality," Appl. Opt. 60, 6331-6336 (2021). https://doi.org/10.1364/AO.431081
  43. Y. Wang, Y. Feng, Y. Ma, Z. Chang, W. Peng, Y. Sun, Q. Gao, R. Zhu, and C. Tang, "2.5 kW narrow linewidth linearly polarized all-fiber MOPA with cascaded phase-modulation to suppress SBS induced self-pulsing," IEEE Photonics J. 12, 1502715 (2020).
  44. S. Ren, P. Ma, W. Li, G. Wang, Y. Chen, J. Song, W. Liu, and P. Zhou, "3.96 kW all-fiberized linearly polarized and narrow linewidth fiber laser with near-diffraction-limited beam quality," Nanomaterials 12, 2541 (2022).
  45. D. Meng, P. Ma, X. Wang, Y. Ma, R. Su, P. Zhou, and L. Yang, "Kilowatt-level high brightness narrow-linewidth polarization-maintained fiber amplifiers based on laser gain competition," Jpn. J. Appl. Phys. 58, 012007 (2018).
  46. P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, "1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and neat-diffraction-limited beam quality," Opt. Express 24, 4187-4195 (2016). https://doi.org/10.1364/OE.24.004187