Acknowledgement
This work was supported by the Agency For Defense Development by the Korean Government (UD160018RD).
References
- Y. Ye, B. Yang, P. Wang, L. Zeng, X. Xi, C. Shi, H. Zhang, X. Wang, P. Zhou, and X. Xu, "Industrial 6 kW high-stability single-stage all-fiber laser oscillator based on conventional large mode area ytterbium-doped fiber," Laser Phys. 31, 035104 (2021).
- K. Ludewigt, A. Liem, U. Stuhr, and M. Jung, "High-power laser development for laser weapons," Proc. SPIE 11162, 1116207 (2019).
- M. N. Zervas, "High power ytterbium-doped fiber lasers-fundamentals and applications," Int. J. Mod. Phys. B 28, 1442009 (2014).
- Y. Wang, Y. Sun, W. Peng, Y. Feng, J. Wang, Y. Ma, Q. Gao, R. Zhu, and C. Tang, "3.25kW all-fiberized and polarization-maintained Yb-doped amplifier with a 20GHz linewidth and near-diffraction-limited beam quality," Appl. Opt. 60, 6331-6336 (2021). https://doi.org/10.1364/AO.431081
- P. Zhou, X. Wang, H. Xiao, Y. Ma, and J. Chen, "Review on recent progress on Yb-doped fiber laser in a variety of oscillation spectral ranges," Laser Phys. 22, 823-831 (2012). https://doi.org/10.1134/S1054660X12050404
- T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE J. Sel. Top. Quantum Electron. 11, 567-577 (2005). https://doi.org/10.1109/JSTQE.2005.850241
- C. C. Cook and T. Y. Fan, "Spectral beam combining of Yb-doped fiber lasers in an external cavity," in Advanced Solid State Lasers (Optica Publishing Group, 1999), paper PD5.
- M. Strecker, M. Plotner, F.Stutzki, T.Walbaum, S.Ehrhardt, T. Benkenstein, U. Zeitner, T. Schreiber, R. Eberhardt, A. Tunnermann, U. Stuhr, M. Jung, and K. Ludewigt, "Highly efficient dual-grating 3-channel spectral beam combining of narrow-linewidth monolithic cw Yb-doped fiber amplifiers up to 5.5 kW," Proc. SPIE 10897, 108970E (2019).
- S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. F. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. Weiss, "100-kW Coherently combined Nd:YAG MOPA laser array," in Frontiers in Optics 2009 (Optica Publishing Group, 2009), paper FThD2.
- Z. Xie, S. Fu, Q. Sheng, W. Shi, J. Yao, "Analysis of thermal effects in high power Yb doped fiber amplifier by distributed pumping," Proc. SPIE 10457, 104573D (2017).
- S. K. Kalyoncu, B. Mete, and A. Yeniay, "Diode-pumped triple-clad fiber MOPA with an output power scaling up to 4.67 kW," Opt. Lett. 45, 1870-1873 (2020). https://doi.org/10.1364/OL.387230
- Y. Panbiharwala, A. Vasant Harish, Y. Feng, D. Venkitesh, J. Nilsson, and B. Srinivasan, "Stimulated Brillouin scattering mitigation using optimized phase modulation waveforms in high power narrow linewidth Yb-doped fiber amplifiers," Opt. Express 29, 17183-17200 (2021). https://doi.org/10.1364/OE.425159
- M. Engholm, M. Tuggle, C. Kucera, T. Hawkins, P. Dragic, and J. Ballato, "On the origin of photodarkening resistance in Yb-doped silica fibers with high aluminum concentration," Opt. Mater. Express 11, 115-126 (2021). https://doi.org/10.1364/OME.413766
- Y. Ye, B. Yang, C. Shi, X. Xi, H. Zhang, X. Wang, P. Zhou, and X. Xu, "Towards power improvement of all-Fiber laser oscillators with 30 Μm-core Yb-doped fibers by suppressing transverse mode instability," Laser Phys. Lett. 17, 085106 (2020).
- E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-541 (1972). https://doi.org/10.1063/1.1654249
- S. Song, A. Jung, and K. Oh, "High-temperature sensitivity in stimulated Brillouin scattering of 1060 nm single-mode fibers," Sensors 19, 4731 (2019).
- O. A. Nieves, M. D. Arnold, M. J. Steel, M. K. Schmidt, and C. G. Poulton, "Noise and pulse dynamics in backward stimulated Brillouin scattering" Opt. Express 29, 3132-3146 (2021). https://doi.org/10.1364/OE.414420
- A. Kobyakov, M. Sauer, and D. Chowdhury, "Stimulated Brillouin scattering in optical fibers," Adv. Opt. Photonics 2, 1-59 (2010). https://doi.org/10.1364/AOP.2.000001
- T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, "3.5 kW bi-directionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser," Laser Phys. 28, 105101 (2018).
- B. Li, M, Liu, Y. Yang, Y. Xian, B. He, and J. Zhou, "Effective Brillouin gain spectra broadening for SBS suppression based on Pseudo random bit sequence phase modulation in fiber system," IEEE Photonics. J. 13, 7100105 (2021).
- E. Lichtman, R. G. Waarts, and A. A. Friesem, "Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers," J. Light. Technol. 7, 171-174 (1989). https://doi.org/10.1109/50.17750
- M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley III, D. J. DiGiovanni, and A. H. McCurdy, "11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber," Proc. SPIE 6873, 68730N (2008).
- H. Xiao, G. Ren, Y. Dong, H. Li, S. Xiao, B. Wu, and S. Jian, "A numerical analysis of GeO2-doped multi-step index single-mode fiber for stimulated Brillouin scattering," J. Opt. 20, 065701 (2018).
- M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, B. He, and J. Zhou, "1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap," Sci. Rep. 10, 629 (2020).
- A. Flores, C. Robin, A. Lanari, and I. Dajani, "Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers," Opt. Express 22, 17735- 17744 (2014). https://doi.org/10.1364/OE.22.017735
- C. Jauregui, T. Eidam, J. Limpert, and A. Tunnermann, "Impact of modal interference on the beam quality of high-power fiber amplifiers," Opt. Express 19, 3258-3271 (2011). https://doi.org/10.1364/OE.19.003258
- T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally beam-combined fiber lasers for high-average-power applications," IEEE J. Sel. Top. Quantum Electron 13, 487-497 (2007). https://doi.org/10.1109/JSTQE.2007.896568
- A. Jung, S. Song, S. Kim, and K. Oh, "Numerical analyses of a spectral beam combining multiple Yb-doped fiber lasers for optimal beam quality and combining efficiency," Opt. Express 30, 13305-13319 (2022). https://doi.org/10.1364/OE.455728
- F. Tian, H. Yan, L. Chen, Y. Ye, J. Li, J. Luo, and F. Lu, "Investigation on the influence of spectral linewidth broadening on beam quality in spectral beam combination," Proc. SPIE 9255, 92553N (2015).
- B. M. Anderson, A. Flores, and I. Dajani, "Filtered pseudo random modulated fiber amplifier with enhanced coherence and nonlinear suppression," Opt. Express 25, 17671-17682 (2017). https://doi.org/10.1364/OE.25.017671
- Y. Zheng, Y. Yang, J. Wang, M. Hu, G. Liu, X. Zhao, X. Chen, K. Liu, C. Zhao, B. He, and J. Zhao, "10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation," Opt. Express 24, 12063-12071 (2016). https://doi.org/10.1364/OE.24.012063
- I. Kim, S. So, J. Mun, K. H. Lee, J. H. Lee, T. Lee, and J. Rho, "Optical characterizations and thermal analyses of HfO2/SiO2 multilayered diffraction gratings for high-power continuous wave laser," J. Phys. Photonics 2, 025004 (2020).
- P. G. Sibley, R. L. Ward, L. E. Roberts, S. P. Francis, and D. A. Shaddock, "Crosstalk reduction for multi-channel optical phase metrology," Opt. Express 28, 10400-10424 (2020). https://doi.org/10.1364/OE.388381
- C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, "A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light," Opt. Express 20, 21196-21213 (2012). https://doi.org/10.1364/OE.20.021196
- I. Gursoy and S. Tunc, "The effects of M2 factor on steel materials," Proc. SPIE 11539, 115390I (2020).
- T. S. Ross, Laser Beam Quality Metrics (SPIE Press, USA, 2013).
- G. Yang, L. Liu, Z. Jiang, J. Guo, and T. F. Wang, "The effect of beam quality factor for the laser beam propagation through turbulence," Optik 156, 148-154 (2018). https://doi.org/10.1016/j.ijleo.2017.10.119
- P. Madasamy, D. R. Jander, C. D. Brooks, T. H. Loftus, A. M. Thomas, P. Jones, and E. C. Honea, "Dual-grating spectral beam combination of high-power fiber lasers," IEEE J. Sel. Top. Quantum Electron. 15, 337-343 (2009). https://doi.org/10.1109/JSTQE.2008.2012266
- N. A. Naderi, I. Dajani, and A. Flores, "High-efficiency, kilowatt 1034 nm all-fiber amplifier operating at 11 pm linewidth," Opt. Lett. 41, 1018-1021 (2016). https://doi.org/10.1364/OL.41.001018
- W. Y. W. Lim, K. W. Seah, Y. E. Ye, B. S. Tan, and C. P. Seah, "Wavelength flexible, kW-level narrow linewidth fibre laser based on 7 GHz PRBS phase modulation," Proc. SPIE 11260, 11126006 (2020).
- Y. Wang, Y. Feng, X. Wang, H. Yan, J. Peng, W. Peng, Y. Sun, Y. Ma, and C. Tang, "6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control," Appl. Opt. 56, 2760-2765 (2017). https://doi.org/10.1364/AO.56.002760
- Y. Wang, Y. Sun, W. Peng, Y. Feng, J. Wang, Y. Ma, Q. Gao, R. Zhu, and C. Tang, "3.25kW all-fiberized and polarization-maintained Yb-doped amplifier with a 20GHz linewidth and near-diffraction-limited beam quality," Appl. Opt. 60, 6331-6336 (2021). https://doi.org/10.1364/AO.431081
- Y. Wang, Y. Feng, Y. Ma, Z. Chang, W. Peng, Y. Sun, Q. Gao, R. Zhu, and C. Tang, "2.5 kW narrow linewidth linearly polarized all-fiber MOPA with cascaded phase-modulation to suppress SBS induced self-pulsing," IEEE Photonics J. 12, 1502715 (2020).
- S. Ren, P. Ma, W. Li, G. Wang, Y. Chen, J. Song, W. Liu, and P. Zhou, "3.96 kW all-fiberized linearly polarized and narrow linewidth fiber laser with near-diffraction-limited beam quality," Nanomaterials 12, 2541 (2022).
- D. Meng, P. Ma, X. Wang, Y. Ma, R. Su, P. Zhou, and L. Yang, "Kilowatt-level high brightness narrow-linewidth polarization-maintained fiber amplifiers based on laser gain competition," Jpn. J. Appl. Phys. 58, 012007 (2018).
- P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, "1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and neat-diffraction-limited beam quality," Opt. Express 24, 4187-4195 (2016). https://doi.org/10.1364/OE.24.004187