DOI QR코드

DOI QR Code

반사형 Focal Reducer를 가지는 높은 개구수의 대물렌즈 설계

Optical Design of a High-numerical-aperture Objective with a Reflective Focal Reducer

  • 이종웅 (청주대학교 에너지.광기술융합학부)
  • Jong Ung Lee (Division of Energy and Optical Technology Convergence, Cheongju University)
  • 투고 : 2023.10.04
  • 심사 : 2023.10.20
  • 발행 : 2023.12.25

초록

낮은 NA의 굴절형 대물렌즈와 반사형 focal reducer로 구성된 NA 0.5의 굴절-반사 대물렌즈를 설계하였다. 굴절형 대물렌즈로는 NA 0.25인 Lister 대물렌즈가 사용되고, 반사형 focal reducer는 구면수차, 코마, 비점수차가 보정된 2구면경계가 사용되었다. 설계된 굴절-반사 대물렌즈는 높은 NA를 가졌음에도 18 mm의 긴 작동거리와 NA 0.25의 Lister 대물렌즈보다 개선된 결상성능을 가지고 있다.

A 0.5-numerical-aperture (NA) refractive-reflective objective, composed of a low-NA refractive and a reflective focal reducer, is designed. A 0.25-NA Lister objective is used for the refractive. A two-spherical-mirror system, corrected for spherical aberration, coma, and astigmatism is used for the reflective focal reducer. In spite of high NA, the refractive-reflective objective has an 18-mm working distance and improved imaging performance, compared to the 0.25-NA Lister objective.

키워드

과제정보

이 논문은 2022-2023학년도에 청주대학교 산업과학연구소가 지원한 학술연구조성비(특별연구과제)에 의해 연구되었다.

참고문헌

  1. Y. Zhang and H. Gross, "Systematic design of microscope objectives. Part I: System review and analysis," Adv. Opt. Technol. 8, 313-347 (2019). https://doi.org/10.1515/aot-2019-0002
  2. Y. Zhang and H. Gross, "Systematic design of microscope objectives. Part II: Lens modules and design principles," Adv. Opt. Technol. 8, 349-384 (2019). https://doi.org/10.1515/aot-2019-0013
  3. W. Ulrich and F. Muchel, "UV-capable dry lens for microscopes," US Patent 5103341A (1992).
  4. W. Vollrath, "Method for manufacturing ultaviolet microscope dry objectives and microscope objectives manufactured in accordance with this method," US Patent 5440422A (1995).
  5. J. E. Webb and T. Tienvieri, "Double mirror catadioptric objective lens system with three optical surface multifunction component," US Patent 6560039B1 (2003).
  6. Y.-H. Chuang, D. Shafer, B.-M. B. Tsai, and J. J. Armstrong, "High NA system for multiple mode imaging," US Patent 6064517A (2000).
  7. D. H. Kim, S. Y. Ju, J. H. Lee, H. Kihm, and H.-S. Yang, "Catadioptric NA 0.6 objective design in 193 nm with 266 nm autofocus," Korean J. Opt. Photonics 34, 53-60 (2023).
  8. M. Laikin, Lens Design, 3rd ed. (CRC Press, USA, 2001), pp. 133-143.
  9. W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw-Hill, USA, 2008), pp. 466-473.
  10. H. Gross, F. Blechinger, and B. Achtner, "Survey of optical instruments," in Handbook of Optical Systems, H. Gross, F. Blechinger, and B. Achtner, Eds. (Wiley-VCH, Germany, 2007), Vol. 4, pp. 569-575.
  11. J.-U. Lee, "Optical design of a high resolution UV objective," J. Ind. Sci. Res. Cheongju Univ. 35, 1-5 (2018).
  12. S.-Y. Lee and J.-U. Lee, "Optical design of a collimator lens that is very stable against chromatic variation," Korean J. Opt. Photonics 28, 68-74 (2017). https://doi.org/10.3807/KJOP.2017.28.2.068
  13. J.-H. Kim and J.-U. Lee, "Optical design of a Lister objective stable against chromatic variation for 405-nm wavelength," Korean J. Opt. Photonics 31, 295-303 (2020).
  14. J.-U. Lee, "New design method of stable lens system against chromatic variation based on paraxial ray tracing," Curr. Opt. Photonics 4, 23-30 (2020).
  15. W. T. Welford, Aberrations of Optical Systems (Taylor & Francis, USA, 1986), pp. 130-152.
  16. J.-U. Lee, "Characteristic evaluation of optical design using dimensionless design parameters," Korean J. Opt. Photonics 33, 35-44 (2022).