DOI QR코드

DOI QR Code

Recent Development in Biocompatible Biosensors

  • Yongju Lee (School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul) ;
  • Swarup Biswas (School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul) ;
  • Minsuk Koo (Department of Computer Science and Engineering, Incheon National University) ;
  • Hyeok Kim (School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul)
  • Received : 2023.10.16
  • Accepted : 2023.10.31
  • Published : 2023.11.30

Abstract

The shift in the medical paradigm from treatment to prevention and diagnosis has underscored the growing significance of biosensors. Notably, the recent COVID-19 pandemic has spurred the widespread adoption of biosensors for the detection of viral genes and antigens. Consequently, there has been a substantial increase in both the demand for biosensors and the industries associated with their production. Furthermore, biosensors find applications not only in healthcare but also in diverse fields such as environmental monitoring, food quality control, military defense, and industrial processes. In this brief review, we delve into the essential attributes of biosensors, namely sensitivity, selectivity, and stability. We provide an overview of the latest research trends aimed at improving these attributes. Additionally, we introduce recent research cases in which these attributes are being applied both in vivo and in vitro.

Keywords

Acknowledgement

This work was supported by the 2023 Research Fund of the University of Seoul.

References

  1. Y. Ohm, C. Pan, M. J. Ford, X. Huang, J. Liao, and C. Majidi, "An electrically conductive silver-polyacrylamide-alginate hydrogel composite for soft electronics", Nat. Electron., Vol. 4, No. 3, pp. 185-192, 2021. https://doi.org/10.1038/s41928-021-00545-5
  2. Q. Su, Q. Zou, Y. Li, Y. Chen, S.-Y. Teng, J.T. Kelleher, R. Nith, P. Cheng, N. Li, and W. Liu, "A stretchable and strain-unperturbed pressure sensor for motion interference-free tactile monitoring on skins", Sci. Adv., Vol. 7, No. 48, pp. eabi4563(1)-eabi4563(9), 2021.
  3. A. H. Anwer, N. Khan, M. Z. Ansari, S.-S. Baek, H. Yi, S. Kim, S. M. Noh, and C. Jeong, "Recent advances in touch sensors for flexible wearable devices", Sensors, Vol. 22, No. 12, pp. 4460(1)-4460(21), 2022. https://doi.org/10.1109/JSEN.2021.3136033
  4. J. Lee, "Human Implantable Arrhythmia Monitoring Sensor with Wireless Power and Data Transmission Technique", Biosens. Bioelectron., Vol. 1, p. 1008, 2015.
  5. R. Rebelo, A. I. Barbosa, D. Caballero, I. K. Kwon, J. M. Oliveira, S. C. Kundu, R. L. Reis, and V. M. Correlo, "3D biosensors in advanced medical diagnostics of high mortality diseases", Biosens. Bioelectron., Vol. 130, pp. 20-39, 2019. https://doi.org/10.1016/j.bios.2018.12.057
  6. Y. Zhang, F. Zhang, Y. Shakhsheer, J. D. Silver, A. Klinefelter, M. Nagaraju, J. Boley, J. Pandey, A. Shrivastava, E. J. Carlson, A. Wood, B. H. Calhoun, and B. P. Otis, "A Batteryless 19 µW MICS/ISM-Band Energy Harvesting Body Sensor Node SoC for ExG Applications", IEEE J. Solid-State Circuits, Vol. 48, No. 1, pp. 199-213, 2013. https://doi.org/10.1109/JSSC.2012.2221217
  7. N. Yi, H. Cui, L. G. Zhang, and H. Cheng, "Integration of biological systems with electronic-mechanical assemblies", Acta Biomater., Vol. 95, pp. 91-111, 2019. https://doi.org/10.1016/j.actbio.2019.04.032
  8. F. K. Shaikh and S. Zeadally, "Energy harvesting in wireless sensor networks: A Comprehensive review", Renew. Sustain. Energy Rev., Vol. 55, pp. 1041-1054, 2016. https://doi.org/10.1016/j.rser.2015.11.010
  9. A. Sayad, E. Skafidas, and P. Kwan, "Magneto-Impedance Biosensor Sensitivity: Effect and Enhancement", Sensors, Vol. 20, No. 18, pp. 5213(1)-5213(20), 2020. https://doi.org/10.1109/JSEN.2019.2959158
  10. L. A. Delouise, P. M. Kou, and B. L. Miller, "Cross-Correlation of Optical Microcavity Biosensor Response with Immobilized Enzyme Activity. Insights into Biosensor Sensitivity", Anal. Chem., Vol. 77, No. 10, pp. 3222-3230, 2005. https://doi.org/10.1021/ac048144+
  11. H. Sharma and R. Mutharasan, "Half Antibody Fragments Improve Biosensor Sensitivity without Loss of Selectivity", Anal. Chem., Vol. 85, No. 4, pp. 2472-2477, 2013. https://doi.org/10.1021/ac3035426
  12. P. Pal, Y. Pratap, M. Gupta, and S. Kabra, "Open gate AlGaN/GaN HEMT biosensor: Sensitivity analysis and Optimization", Superlattices Microstruct., Vol. 156, p. 106968, 2021.
  13. Y. Wei, S. Jiang, J. Li, X. Li, K. Li, J. Li, and Z. Fang, "A biosensor material with robust mechanical properties, fatigue resistance, biocompatibility, biodegradability, and anti-freezing capabilities", J. Mater. Chem. A, Vol. 10, No. 15, pp. 8491-8500, 2022. https://doi.org/10.1039/D1TA10998G
  14. S. W. Hwang, C. H. Lee, H. Cheng, J. Jeong, S. K. Kang, J. H. Kim, J. Shin, J. Yang, Z. Liu, G. A, Ameer, Y. Huangm, and J. A. Rogers, "Biodegradable Elastomers and Silicon Nanomembranes/Nanoribbons for Stretchable, Transient Electronics, and Biosensors", Nano Lett., Vol. 15, No. 5, pp. 2801-2808, 2015. https://doi.org/10.1021/nl503997m
  15. H. Zhao, L. Zhang, T. Deng, and C. Li, "High-performance sensing, breathable, and biodegradable integrated wearable sweat biosensors for a wireless glucose early warning system", J. Mater. Chem. A, Vol. 11, p. 12395, 2023.
  16. T. P. Huynh, P. S. Sharma, M. Sosnowska, F. D. Souza, and W. Kutner, "Functionalized polythiophenes: Recognition materials for chemosensors and biosensors of superior sensitivity, selectivity, and detectivity", Prog. Polym. Sci., Vol. 47, pp. 1-25, 2015. https://doi.org/10.1016/j.progpolymsci.2015.04.009
  17. J. Kim, G. V. Ramirez, A. J. Bandodkar, W. Jia, A. G. Martinez, J. Ramirez, P. Mercier, and J. Wang, "Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites", Analyst, Vol. 139, No. 7, pp. 1632-1636, 2014. https://doi.org/10.1039/C3AN02359A
  18. C. S. Liu, C. X. Sun, J. Y. Tian, Z. W. Whang, H. F. Ji, Y. P. Song, S. Zhang, Z. H. Zhang, L. H. He, and M. Du, "Highly stable aluminum-based metal organic frameworks as biosensing platforms for assessment of food safety", Biosens. Bioelectron., Vol. 91, pp. 804-810, 2017. https://doi.org/10.1016/j.bios.2017.01.059
  19. L. Li, X. Liu, T. Wei, K. Wang, Z. Zhao, J. Cao, and Y. Liu, "Carbon Nanotube Field-Effect Transistor Biosensor with an Enlarged Gate Area for Ultra-Sensitive Detection of a Lung Cancer Biomarker", ACS Appl. Mater. Interfaces, Vol. 15, No. 22, pp. 27299-27306, 2023. https://doi.org/10.1021/acsami.3c02700
  20. A. Sen, J. Shim, A. Bala, H. Park, and S. Kim, "Boosting Sensitivity and Reliability in Field-Effect Transistor-Based Biosensors with Nanoporous MoS2 Encapsulated by Non-Planar Al2O3", Advanced Functional Materials, Vol. 33, No. 42, pp. 2301919(1)-2301919(10), 2023.
  21. Y. Li, Y. Mao, C. Xiao, X. Xu, and X. Li, "Flexible pH sensor based on a conductivity PANI membrane for pH monitoring", RSC Adv., Vol. 10, No. 1, pp. 21-28, 2020. https://doi.org/10.1039/C9RA09188B
  22. B. Liu, S. Yu, Y. Zhou, Y. Lei, L. Tang, G. J. Zhang, and Y. T. Li, "Dual-Needle Field-Effect Transistor Biosensor for In Vivo pH Monitoring", ACS Sens., Vol. 8, No. 7, pp. 2609-2617, 2023. https://doi.org/10.1021/acssensors.3c00415
  23. G. J. Kost and M. J. McQueen, "New whole blood analyzers and their impact on cardiac and critical care, Critical Reviews in Clinical Laboratory Sciences", Crit. Rev. Clin. Lab. Sci., Vol. 30, No. 2, pp. 153-202, 1993. https://doi.org/10.3109/10408369309084667
  24. J. Bakker, P. Gris, M. Coffernils, R. J. Kahn, and J. L. Vincent, "Serial blood lactate levels can predict the development of multiple organ failure following septic shock", Am. J. Surg., Vol. 171, No. 2, pp. 221-226, 1996. https://doi.org/10.1016/S0002-9610(97)89552-9
  25. R. Pilloton, T. N. Nwosu, and M. Mascini, "Amperometric Determination of Lactic Acid. Applications on Milk Samples", Anal. Lett., Vol. 21, No. 5, pp. 727-740, 1988. https://doi.org/10.1080/00032718808070855
  26. F. Mazzi, A. Azzoni, B. Cacalieri, F. Botre, and C. Botre, "A multi-enzyme bioelectrode for the rapid determination of total lactate concentration in tomatoes, tomato juice and tomato paste", Food Chem, Vol. 55, No. 4, pp. 413-418, 1996. https://doi.org/10.1016/0308-8146(95)00168-9
  27. J. Wang, "Amperometric biosensors for clinical and therapeutic drug monitoring: a review", J. Pharm. Biomed. Anal., Vol. 19, No. 1-2, pp. 47-53, 1999. https://doi.org/10.1016/S0731-7085(98)00056-9
  28. A. Parra, E. Casero, L. Vazquez, F. Pariente, and E. Lorenzo, "Design and characterization of a lactate biosensor based on immobilized lactate oxidase onto gold surfaces", Anal. Chim. Acta, Vol. 555, No. 2, pp. 308-315, 2006. https://doi.org/10.1016/j.aca.2005.09.025
  29. M. C. Castrovilli, V. Scognamigli, E. Tempesta, J. Chiarinelli, M. Parracino, V. Frisulli, M.T. Giardi, L. Avaldi, D. Rossi, and A. Cartoni, "Improved reuse and storage performances at room temperature of a new environmentally friendly lactate oxidase biosensor prepared by ambient electrospray immobilization", Green Chem., Vol. 25, pp. 5257-5266, 2023.
  30. L. Yang, N. Yi, J. Zhu, Z. Cheng, X. Yin, X. Zhang, H. Zhu, and H. Cheng, "Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities", J. Mater. Chem. A, Vol. 8, No. 14, pp. 6487-6500, 2020. https://doi.org/10.1039/C9TA07855J
  31. L. Yang, H. Ji, C. Meng, Y. Li, G. Zheng, X. Chen, G. Niu, Y. Yan, Y. Xue, and S. Guo, "Intrinsically Breathable and Flexible No2 Gas sensors Produced by Laser Direct Writing of Self-Assembled Block Copolymers", ACS Appl. Mater. Interfaces, Vol. 14, No. 15, pp. 17818-17825, 2022. https://doi.org/10.1021/acsami.2c02061
  32. L. Yang, Z. Wang, H. Wang, B. Jin, C. Meng, X. Chen, R. Li, H. Wang, M. Xin, Z. Zhao, S. Guo, J. Wu, and H. Cheng, "Self-Healing, Reconfigurable, Thermal-Switching, Transformative Electronics for Health Monitoring", Adv. Mater., Vol. 35, No. 15, p. 2207742, 2023.
  33. R. M. Aileni, A. C. Valderrama, and R. Strungaru, "Wearable Electronics for Elderly Health Monitoring and Active Living" in Ambient Assisted Living and Enhanced Living Environment, C. Dobre, N. Garcia, G. Mastorakis, C. Mavromoustakis, and R. Goleva, Eds. Oxford, Butterworth-Heinemann, Oxford, pp. 247-269, 2017.
  34. M. Ghamari, B. Janko, R. S. Sherratt, W. Harwin, R. Piechockic, and C. Soltanpur, "A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments", Vol. 16, No. 6, pp. 831(1)-831(33), 2016. https://doi.org/10.3390/s16060831
  35. V. Perumal, "U. Hashim, Advances in biosensors: Principle, architecture and applications", J. Appl. Biomed., Vol. 12, No. 1, pp. 1-15, 2014. https://doi.org/10.1016/j.jab.2013.02.001
  36. S. Kumar, W. Ahlawat, R. Kumal, and N. Dilbaghi, "Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare", Biosens Bioelectron., Vol. 70, pp. 498-503, 2015. https://doi.org/10.1016/j.bios.2015.03.062
  37. J. Kim, I. Jeerapan, S. Imani, T. N. Cho, A. Bandodkar, S. Cinti, P. P. Mercier, and J. Whang, "Noninvasive Alcohol Monitoring Using a Wearable Tattoo-Based Iontophoretic-Biosensing System", ACS Sens., Vol. 1, No. 8, pp. 1011-1019, 2016. https://doi.org/10.1021/acssensors.6b00356
  38. C. Wang, Y. Hu, Y. Liu, Y. Shan, X. Qu, J. Xue, T. He, S. Cheng, H. Zhou, W. Liu, Z. H. Guo, W. Hua, Z. Liu, Z. Li, and C. Lee, "Tissue-Adhesive Piezoelectric Soft Sensor for In Vivo Blood Pressure Monitoring During Surgical Operations", Adv. Funct. Mater., Vol. 33, No. 38, pp. 2303696(1)-2303696(10), 2023.