Acknowledgement
This study was partially supported by the KIST Institutional Program.
References
- B. Zhao, Q. Wang, D. Li, H. Yang, X. Bai, S. Li, P. Liu, and X. Sun, "Red and green quantum dot color filter for Full-Color Micro-LED arrays", Micromachines, Vol. 13, No. 4, pp. 595-601, 2022. https://doi.org/10.3390/mi13040595
- Z. Yang, M. Gao, W. Wu, X. Yang, X. W. Sun, J. Zhang, H. Wang, R. L iu, C. Han, H. Yang, and H. L i, "Recent advances in quantum dot-based light-emitting devices: Challenges and possible solutions", Mater. Today, Vol. 24, pp. 69-93, 2019. https://doi.org/10.1016/j.mattod.2018.09.002
- D. A. Hanifi, N. D. Bronstein, B. A. Koscher, Z. Nett, J. K. Swabeck, K. Takano, A. M. Schwartzberg, L. Maserati, K. Vandewal, Y. van de Burgt, A. Salleo, and A. P. Alivisatos, "Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield", Science, Vol. 363, No. 6432, pp. 1199-1202, 2019. https://doi.org/10.1126/science.aat3803
- O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, "Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking", Nat. Mater., Vol. 12, No. 5, 445-451, 2013. https://doi.org/10.1038/nmat3539
- Y. Won, O. Cho, T. Kim, D. Chung, T. Kim, H. Chung, H. Jang, J. Lee, D. Kim, and E. Jang, "Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes", Nature, Vol. 575, No. 7784, pp. 634-638. 2019. https://doi.org/10.1038/s41586-019-1771-5
- Y. Kim, S. Ham, H. Jang, J.H. Min, H. Chung, J. Lee, D. Kim, and E. Jang, "Bright and uniform green light emitting InP/ZnSe/ZnS quantum dots for wide color gamut displays", ACS Appl. Nano Mater., Vol. 2, No. 3, pp. 1496- 1504, 2019. https://doi.org/10.1021/acsanm.8b02063
- R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, "Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots", Nano Lett., Vol. 5, No. 5, pp. 865-871, 2005. https://doi.org/10.1021/nl0502672
- R. Munoz, E. M. Santos, C. A. Galan-Vidal, J. M. Miranda, A. Lopez-Santamarina, and J. A. Rodriguez, "Ternary Quantum Dots in Chemical Analysis. Synthesis and Detection Mechanisms", Molecules, Vol. 26, No. 9, pp. 2764-2779, 2021. https://doi.org/10.3390/molecules26092764
- C. M. Doneg, P. Liljeroth, and D. Vanmaekelbergh, "Physicochemical Evaluation of the Hot-Injection Method, a Synthesis Route for Monodisperse Nanocrystals", Small, Vol. 1, No. 12, pp. 1152-1162, 2005. https://doi.org/10.1002/smll.200500239
- F. Einar Kruis, H. Fissan, A. P. Agarwal, H. Rai, and S. Mondal, "Synthesis of Nanoparticles in the gas phase forl electronic, optical and magnetic applications-A Review", J. Aerosol Sci., Vol. 29, No. 5-6, pp. 511-535, 1998. https://doi.org/10.1016/S0021-8502(97)10032-5
- G. Li, Q. Li, R. Cheng, and S. Chen, "Synthesis of quantum dots based on microfluidic technology", Curr. Opin. Chem. Eng., Vol. 29, pp. 34-41, 2020. https://doi.org/10.1016/j.coche.2020.02.005
- S. Kubendhiran, Z. Bao, K. Dave, and R. Liu, "Micro-fluidic Synthesis of Semiconducting Colloidal Quantum Dots and Their Applications", ACS Appl. Nano Mater., Vol. 2, No. 4, pp. 1773-1790, 2019. https://doi.org/10.1021/acsanm.9b00456
- J. Yang, M. K. Choi, D. Kim, and T. Hyeon, "Designed assembly and integration of colloidal nanocrystals for device applications", Adv. Mater., Vol. 28, No. 6, pp.1176-1207, 2016. https://doi.org/10.1002/adma.201502851
- X. Dai, Y. Deng, X. Peng, and Y. Jin, "Quantum-dot light-emitting diodes for large area displays: towards the dawn of commercialization", Adv. Mater., Vol. 29, No. 14, p.1607022, 2017.
- S. Pimputkar, J. S. Speck, S. P. Denbaars, and S. Nakamura, "Prospects for LED lighting", Nat. Photon., Vol. 3, No. 4, pp.180-182, 2009. https://doi.org/10.1038/nphoton.2009.32
- Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, "High-efficiency light-emitting devices based on quantum dots with tailored nanostructures", Nat. Photonics, Vol. 9, No. 4, pp. 259-266, 2015. https://doi.org/10.1038/nphoton.2015.36
- H. Goesmann and C. Feldmann, "Nanoparticulate functional materials", Angew. Chem. Int. Ed., Vol. 49, No. 8, pp. 1362-1395, 2010. https://doi.org/10.1002/anie.200903053
- L. Wang, J. Lin, Y. Hu, X. Guo, Y. Lv, Z. Tang, J. Zhao, Y. Fan, N. Zhang, Y. Wang, and X. Liu, "Blue Quantum Dot Light-Emitting Diodes with High Electroluminescent Efficiency", ACS Appl. Mater. Interfaces, Vol. 9, No. 44, pp. 38755-38760, 2017. https://doi.org/10.1021/acsami.7b10785
- C. Pu, X. Dai, Y. Shu, M. Zhu, Y. Deng, Y. Jin, and X. Peng, "Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots", Nat. Commun., Vol. 11, No. 1, pp. 937-946, 2020. https://doi.org/10.1038/s41467-020-14756-5
- L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, "Stable and Efficient Quantum-Dot Light-Emitting Diodes Based on Solution Multilayer Structures", Nat. Photon., Vol. 5, No. 9, pp. 543-548, 2011. https://doi.org/10.1038/nphoton.2011.171
- J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, "Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure", Nano Lett., Vol. 12, No. 5, pp. 2362-2366, 2012. https://doi.org/10.1021/nl3003254
- K. Lee, J. Lee, W. Song, H. Ko, J. Lee, and H. Yang, "Highly Efficient, Color-Pure, Color-Stable Blue Quantum Dot Light-Emitting Devices", ACS Nano, Vol. 7, No. 8, pp. 7295-7302, 2013. https://doi.org/10.1021/nn402870e
- J. P. Park, J. Lee, and S. Kim, "Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process", Sci. Rep., Vol. 6, No. 1, pp. 30094(1)-30094(6), 2016. https://doi.org/10.1038/s41598-016-0001-8
- H. Zhang, X. Ma, Q. Lin, Z. Zeng, H. Wang, L. S. Li, H. Shen, Y. Jia, and Z. Du, "High-Brightness Blue InP Quantum Dot-Based Electroluminescent Devices: The Role of Shell thickness", J. Phys. Chem. Lett., Vol. 11, No. 3, pp. 960-967, 2020. https://doi.org/10.1021/acs.jpclett.9b03567
- T. Kim, K.-H. Kim, S. Kim, S.-M. Choi, H. Jang, H.-K. Seo, H. Lee, D.-Y. Chung, and E. Jang, "Efficient and stable blue quantum dot light-emitting diode", Nature, Vol. 586, pp. 385-389, 2020. https://doi.org/10.1038/s41586-020-2791-x
- S. Jain, S. Bharti, G. K. Bhullar, and S. K. Tripathi, "I-III-VI core/shell QDs: Synthesis, characterizations and applications", J. Lumin., Vol. 219, pp. 116912-11630, 2020.
- T. S. Ponomaryovaa A. S. Novikovaa, A. M. Abramovaa, O. A. Goryachevaa, D. D. Drozda, P. D. Strokina, and I. Yu. Goryachevaa, "New-Generation Low-Toxic I-III-VI2 Quantum Dots in Chemical Analysis", J. Anal. Chem., Vol. 77, No. 4, pp. 402-409, 2022. https://doi.org/10.1134/S1061934822040086
- K. Zheng, M. I. Setyawati, T. P. Lim, D. T. Leong, and J. Xie, "Antimicrobial Cluster Bombs: Silver Nanoclusters Packed with Daptomycin", ACS Nano., Vol. 10, No. 8, pp. 7934-7942, 2016. https://doi.org/10.1021/acsnano.6b03862
- N. Goswami, F. L in, Y. Liu, D. T. Leong, and J. Xie, "Highly Luminescent Thiolated Gold Nanoclusters Impregnated in Nanogel", Chem. Mater., Vol. 28, pp. 4009-4016, 2016. https://doi.org/10.1021/acs.chemmater.6b01431
- X. Hu, T. L iu, Y. Zhuang, W. Wang, Y. L i, W. Fan, Y. Huang, "Recent advances in the analytical applications of copper nanoclusters", TrAC Trend Anal. Chem., Vol. 77, pp. 66-75, 2016. https://doi.org/10.1016/j.trac.2015.12.013
- S. L. Chia, C. Y. Tay, M. I. Setyawati, and D. T. Leong, "Decoupling the Direct and Indirect Biological Effects of ZnO Nanoparticles Using a Communicative Dual Cell-Type Tissue Construct", Small, Vol. 12, No. 5, pp. 647-657, 2016. https://doi.org/10.1002/smll.201502306
- M. Olutas, B. Guzelturk, Y. Kelestemur, K. Gungor, and H. V. Demir, "Noncontact Temperature Probing: Highly Efficient Nonradiative Energy Transfer from Colloidal Semiconductor Quantum Dots to Wells for Sensitive Noncontact Temperature Probing", Adv. Funct. Mater., Vol. 26, No. 17, pp. 2891-2899, 2016. https://doi.org/10.1002/adfm.201505108
- X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, and P. Chen, "Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications", Small, Vol. 11, No. 14, pp. 1620-1636, 2015. https://doi.org/10.1002/smll.201402648
- B. Kong, J. Tang, Y. Zhang, T. Jiang, X. Gong, C. Peng, J. Wei, J. Yang, Y. Wang, X. Wang, G. Zheng, C. Selomulya, and D. Zhao, "Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks", Nat. Chem., Vol. 8, No. 2, pp. 171-178, 2016. https://doi.org/10.1038/nchem.2405
- S. Qu, D. Zhou, D. Li, W. Ji, P. Jing, D. Han, L. Liu, H. Zeng, and D. Shen, "Toward Efficient Orange Emissive Carbon Nanodots through Conjugated sp2-Domain Controlling and Surface Charges Engineering", Adv. Mater., Vol. 28, No. 18, pp. 3516-3521, 2016. https://doi.org/10.1002/adma.201504891
- Y. Wu, X. Zhu, X. Ji, W. Liu, W. Wan, Y. Wang, X. Pan, and Z. Lu, "Graphene quantum dots as a highly efficient electrocatalyst for lithium-oxygen batteries", J. Mater. Chem. A, Vol. 8, No. 42, pp. 22356-22368, 2020. https://doi.org/10.1039/D0TA07587F
- J. Robertson and E. P. O'Reilly, "Electronic and atomic structure of amorphous carbon", Phys. Rev. B, Vol. 35, No. 6, pp. 2946-2957, 1987. https://doi.org/10.1103/PhysRevB.35.2946
- C. Mathioudakis, G. Kopidakis, P.C. Kelires, P. Patsalas, M. Gioti, and S. Logothetidis, "Electronic and optical properties of a-C from tight-binding molecular dynamics simulations", Thin Solid Films, Vol. 482, No. 1-2, pp.151-155, 2005. https://doi.org/10.1016/j.tsf.2004.11.133
- C. W. Chen and J. Robertson, "Nature of disorder and localization in amorphous carbon", J. Non-Cryst. Solids, Vol. 227-230, pp. 602-606, 1998. https://doi.org/10.1016/S0022-3093(98)00338-X
- S. J. Zhu, S. J. Tang, J. H. Zhang, and B. Yang, "The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective", Chem. Commun., Vol. 48, p p . 4527-4539, 2012. https://doi.org/10.1039/c2cc31201h
- L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, J. Hao, and S. P. Lau, "Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots", ACS Nano, Vol. 6, No. 6, pp. 5102-5110, 2012. https://doi.org/10.1021/nn300760g
- Y. Zhou, Q. Bao, L. A. L. Tang, Y. Zhong, and K. P. Loh, "Hydrothermal dehydration for the "green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting", Chem. Mater., Vol. 21, No. 13, pp. 2950-2956, 2009. https://doi.org/10.1021/cm9006603
- J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. Zhu, and P. M. Ajayan, "Graphene quantum dots derived from carbon fibers", Nano Lett., Vol. 12, pp. 844-849, 2012. https://doi.org/10.1021/nl2038979
- S. Kim, S. W. Hwang, M. K. Kim, D. Y. Shin, D. H. Shin, C. O. Kim, S. B. Yang, J. H. Park, E. Hwang, S. K. Choi, G. Ko, S. Sim, C. Sone, H. J. Choi, S. Bae, and B. H. Hong, "Anomalous behaviors of visible luminescence from graphene quantum dots: Interplay between size and shape", ACS Nano, Vol. 6, No. 9, pp. 8203-8208, 2012. https://doi.org/10.1021/nn302878r
- C. T. Chien, S. S. Li, W. J. Lai, Y. C. Yeh, H. A. Chen, I. S. Chen, L. C. Chen, K. H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C. W. Chen, "Tunable Photoluminescence from Graphene Oxide", Angew. Chem. Int. Ed., Vol. 51, No. 27, pp. 6662-6666, 2012. https://doi.org/10.1002/anie.201200474
- G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen, and M. Chhowalla, "Blue photoluminescence from chemically derived graphene oxide", Adv. Mater., Vol. 22, No. 4, pp. 505-509, 2010. https://doi.org/10.1002/adma.200901996
- K. P. Loh, Q. Bao. G. Eda, and M. Chhowalla, "Graphene oxide as a chemically tunable platform for optical applications", Nat. Chem., Vol. 2, No. 12, pp. 1015-1024, 2010. https://doi.org/10.1038/nchem.907
- Q. S. Mei, K. Zhang, G. J. Guan, B. H. Liu, S. H. Wang, and Z. P. Zhang, "Highly efficient photoluminescent graphene oxide with tunable surface properties", Chem. Commun., Vol. 46, No. 39, pp. 7319-7321, 2010. https://doi.org/10.1039/c0cc02374d
- H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, "Intrinsic and Rashba spin-orbit interactions in graphene sheets", Phys. Rev. B, Vol. 74, No. 16, pp. 165310(1)- 165310(5), 2006. https://doi.org/10.1103/PhysRevB.74.165310
- J. R. Petta, A. C. Johnson, J. M. Taylor, E. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, "Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots", Science, Vol. 309, No. 5744, pp. 2180-2184, 2005. https://doi.org/10.1126/science.1116955
- F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. P. Kouwenhoven, and L. M. K. Vandersypen, "Driven coherent oscillations of a single electron spin in a quantum dot", Nature, Vol. 442, No. 7104, pp. 766-771, 2006. https://doi.org/10.1038/nature05065
- S. N. Baker and G. A. Baker, "Luminescent Carbon Nanodots: Emergent Nanolights", Angew. Chem. Int. Ed., Vol. 49, No. 38, pp. 6726-6744, 2010. https://doi.org/10.1002/anie.200906623
- X. Yan, X. Cui, and X. Li, "Synthesis of large, stable colloidal graphene quantum dots with tunable size", J. Am. Chem. Soc., Vol. 132, No. 17, pp. 5944-5945, 2010. https://doi.org/10.1021/ja1009376
- X. Yan, B. Li, and L. Li, "Colloidal Graphene Quantum Dots with Well-Defined Structures", Acc. Chem. Res., Vol. 46, No. 10, pp. 2254-2262, 2013. https://doi.org/10.1021/ar300137p
- D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, "Emissive ZnO-graphene quantum dots for white-light-emitting diodes", Nat. Nanotechnol., Vol. 7, No. 7, pp. 465-471, 2012. https://doi.org/10.1038/nnano.2012.71
- L. Lin, Y. Xu, S. Zhang, I. M. Ross, A. C. Ong, and D. A. Allwood, "Fabrication of Luminescent Monolayered Tungsten Dichalcogenides Quantum Dots with Giant Spin-Valley Coupling", ACS Nano, Vol. 7, No. 9, pp. 8214-8223, 2013. https://doi.org/10.1021/nn403682r
- S. Zhang, X. Jia, and E. Wang, "Facile synthesis of optical pH-sensitive molybdenum disulfide quantum dots", Nanoscale, Vol. 8, No. 33, pp. 15152-15157, 2016. https://doi.org/10.1039/C6NR04726B
- H. H. Kim, Y. Lee, Y. J. Lee, J. Jeong, Y. Yi, C. Park, S.-Y. Yim, B. Angadi, K.-J. Ko, J.-W. Kang, and W. K. Choi, "Realization of Excitation Wavelength Independent Blue Emission of ZnO Quantum Dots with Intrinsic Defects", ACS Photonics, Vol. 7, No. 3, pp.723-734, 2021. https://doi.org/10.1021/acsphotonics.9b01587
- R. Shimada, B. Urban, M. Sharma, A. Singh, V. Avrutin, H. Morkoc, and A. Neogi, "Energy transfer in ZnO-anthracene hybrid structure", Opt. Mater. Express, Vol. 2, No. 4, pp. 526-533, 2012. https://doi.org/10.1364/OME.2.000526
- A. Menson, J. A. H. Jochen, J. W. Martin, J. Akroyd, J. Robertson, and M. Kraft, "Optical band gap of cross-linked, curved, and radical polyaromatic hydrocarbons", Phys. Chem. Chem. Phys., Vol. 21, No. 29, pp. 16240-16251, 2019. https://doi.org/10.1039/C9CP02363A
- H. H. Kim, S. Park, H. Lee, J. K. Kang, and W. K. Choi, "Blue-Light Emissive Type II ZnO@5-Amino-2-Naphthalene Sulfonic Acid Core-Shell Quantum Dots", Adv. Photon. Res., Vol. 3, No. 4, pp. 2100315-2100327, 2022. https://doi.org/10.1002/adpr.202100315
- H. H. Kim, S. Park, K.-J. Ko, S.-Y. Yim, J.-W. Kang, and W. K. Choi, "Blue Light Emitting Diodes based on Bright Quasi-Type-II ZnO@1-Aminopyrene Hybrid Quantum Dots with a Long Operation Life", Adv. Opt. Mater., Vol. 10, No. 18, pp. 2200601-2200611, 2022. https://doi.org/10.1002/adom.202200601
- A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, and A. Chowdhury, "Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots", Angew. Chem. Int. Ed., Vol. 54, pp. 15424-15428, 2015. https://doi.org/10.1002/anie.201508276
- J. Wang, X. Liu, L. Zhou, W. Shen, M. Li, and R. He, "Highly luminescent and stable quasi-2D perovskite quantum dots by introducing large organic cations", Nanoscale Adv., Vol. 3, No. 18, pp. 5393-5398, 2021. https://doi.org/10.1039/D1NA00157D
- W. Lv, L. Li, M. Xu, J. Hong, X. Tang, L. Xu, Y. Wu, R. Zhu, R. Chen, and W. Huang, "Improving the stability of metal halide perovskite quantum dots by encapsulation", Adv. Mater., Vol. 31, No. 28, p.1900682, 2019.
- X. Ren, X. Zhang, H. Xie, J. Cai, C. Wang, E. Chen, and S. Xu, "Perovskite Quantum Dots for Emerging Displays: Recent Progress and Perspectives", Nanomaterial, Vol. 12, No. 13, pp. 2243-2270, 2022. https://doi.org/10.3390/nano12132243
- G. Nedelcu, L. Protesescu, S. Yakunin, M.I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, "Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I)", Nano Lett., Vol. 15, No. 8, pp. 5635-5640, 2015. https://doi.org/10.1021/acs.nanolett.5b02404
- L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Cap uto, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, "Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut", Nano Lett., Vol. 15, No. 6, pp. 3692-3696, 2015. https://doi.org/10.1021/nl5048779
- X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, and H. Zeng, "CsPbX3 Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes", Adv. Funct. Mater., Vol. 26, No. 15, pp. 2435-2445, 2016. https://doi.org/10.1002/adfm.201600109
- I. Lignos, R. Maceiczyk, and A. J. de Mello, "Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth", Acc. Chem. Res., Vol. 50, No. 5, pp. 1248-1257, 22017. https://doi.org/10.1021/acs.accounts.7b00088
- M. Chen, Y. Zou, L. Wu, Q. Pan, D. Yang, H. Hu, Y. Tan, Q. Zhong, Y. Xu, H. Liu, B. Sun, and Q. Zhang, "Solvothermal Synthesis of High-Quality All-Inorganic Cesium Lead Halide Perovskite Nanocrystals:From Nanocube to Ultrathin Nanowire", Adv. Funct. Mater., Vol. 27, No. 23, p. 1701121, 2017.
- I. Lignos, V. Morad, Y. Shynkarenko, C. Bernasconi, R. M. Maceiczyk, L. Protesescu, F. Bertolotti, S. Kumar, S. T. Ochsenbein, N. Masciocchi, A. Guagliardi, C.-J. Shih, M. I. Bodnarchuk, A. J. deMello, and M. V. Kovalenkom, "Exploration of Near-Infrared-Emissive Colloidal Multinary Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform", ACS Nano, Vol. 12, No. 6, pp. 5504-5517,2018. https://doi.org/10.1021/acsnano.8b01122
- X. Li, F. Cao, D. Yu, J. Chen, Z. Sun, Y. Shen, Y. Zhu, L. Wang, Y. Wei, Y. Wu, and Haibo Zeng, "All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications", Small, Vol. 13, No. 9, p.1603996. 2017.
- G. Pan, X. Bai, W. Xu, X. Chen, Y. Zhai, J. Zhu, H. Shao, N. Ding, L. Xu, B. Dong, Y. Mao, and H. Song, "Bright blue light emission of Ni2+ion-doped CsPbClxBr3-x perovskite quantum dots enabling efficient light-emitting devices", ACS Appl. Mater. Interfaces, Vol. 12, No. 12, pp. 14195-14202, 2020. https://doi.org/10.1021/acsami.0c01074