DOI QR코드

DOI QR Code

BREDON HOMOLOGY OF WALLPAPER GROUPS

  • Ramon Flores (Departamento de Geometria y Topologia Universidad de Sevilla)
  • Received : 2022.09.26
  • Accepted : 2023.01.27
  • Published : 2023.11.30

Abstract

In this paper we compute the Bredon homology of wallpaper groups with respect to the family of finite groups and with coefficients in the complex representation ring. We provide explicit bases of the homology groups in terms of irreducible characters of the stabilizers.

Keywords

Acknowledgement

The author was supported by grant PID2020-117971GB-C21 of the Spanish Ministery of Science and Innovation, and grant FQM-213 of the Junta de Andalucia.

References

  1. Y. Antol'in and R. Flores, On the classifying space for proper actions of groups with cyclic torsion, Forum Math. 26 (2014), no. 1, 271-294. https://doi.org/10.1515/form.2011.159
  2. G. Z. Arone, W. G. Dwyer, and K. Lesh, Bredon homology of partition complexes, Doc. Math. 21 (2016), 1227-1268. https://doi.org/10.4171/dm/x1
  3. S. Azzali, S. L. Browne, M. P. Gomez Aparicio, L. C. Ruth, and H. Wang, K-homology and K-theory of pure braid groups, New York J. Math. 28 (2022), 1256-1294.
  4. A. T. Bui and G. Ellis, Computing Bredon homology of groups, J. Homotopy Relat. Struct. 11 (2016), no. 4, 715-734. https://doi.org/10.1007/s40062-016-0146-y
  5. T. Dieck, Transformation groups, De Gruyter Studies in Mathematics, 8, de Gruyter, Berlin, 1987.
  6. M. P. F. Du Sautoy, J. J. McDermott, and G. C. Smith, Zeta functions of crystallographic groups and analytic continuation, Proc. London Math. Soc. (3) 79 (1999), no. 3, 511-534. https://doi.org/10.1112/S002461159901206X
  7. R. Flores, S. Pooya, and A. Valette, K-homology and K-theory for the lamplighter groups of finite groups, Proc. Lond. Math. Soc. (3) 115 (2017), no. 6, 1207-1226. https://doi.org/10.1112/plms.12061
  8. J. P. C. Greenlees and J. P. May, Equivariant stable homotopy theory, in Handbook of algebraic topology, 277-323, North-Holland, Amsterdam, 1995. https://doi.org/10.1016/B978-044481779-2/50009-2
  9. B. Hartley and T. O. Hawkes, Rings, modules and linear algebra. A further course in algebra describing the structure of Abelian groups and canonical forms of matrices through the study of rings and modules, Chapman and Hall, Ltd., London, 1970.
  10. D. H. Kochloukova, C. Mart'inez-P'erez, and B. E. A. Nucinkis, Cohomological finiteness conditions in Bredon cohomology, Bull. Lond. Math. Soc. 43 (2011), no. 1, 124-136. https://doi.org/10.1112/blms/bdq088
  11. J.-F. Lafont, I. J. Ortiz, A. D. Rahm, and R. J. Sanchez-Garcia, Equivariant K-homology for hyperbolic reflection groups, Q. J. Math. 69 (2018), no. 4, 1475-1505. https://doi.org/10.1093/qmath/hay030
  12. W. Luck, Survey on classifying spaces for families of subgroups, in Infinite groups: geometric, combinatorial and dynamical aspects, 269-322, Progr. Math., 248, Birkhauser, Basel, 2005. https://doi.org/10.1007/3-7643-7447-0_7
  13. W. Luck and H. Reich, The Baum-Connes and the Farrell-Jones conjectures in K- and L-theory, in Handbook of K-theory. Vol. 1, 2, 703-842, Springer, Berlin, 2005. https://doi.org/10.1007/978-3-540-27855-9_15
  14. W. Luck and W. R. Stamm, Computations of K- and L-theory of cocompact planar groups, K-Theory 21 (2000), no. 3, 249-292. https://doi.org/10.1023/A:1026539221644
  15. G. Mackiw, Applications of Abstract Algebra, John Wiley & Sons, Inc., New York, 1985.
  16. K. Matthews, http://www.numbertheory.org/php/smith.html
  17. J. P. May, Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics, 91, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1996. https://doi.org/10.1090/cbms/091
  18. G. Mislin and A. Valette, Proper group actions and the Baum-Connes conjecture, Advanced Courses in Mathematics. CRM Barcelona, Birkhauser Verlag, Basel, 2003. https://doi.org/10.1007/978-3-0348-8089-3
  19. S. Pooya, K-theory and K-homology of finite wreath products with free groups, Illinois J. Math. 63 (2019), no. 2, 317-334. https://doi.org/10.1215/00192082-7768735
  20. R. Sanchez-Garcia, Bredon homology and equivariant K-homology of SL(3, Z), J. Pure Appl. Algebra 212 (2008), no. 5, 1046-1059. https://doi.org/10.1016/j.jpaa.2007.07.019
  21. D. Schattschneider, The plane symmetry groups: their recognition and notation, Amer. Math. Monthly 85 (1978), no. 6, 439-450. https://doi.org/10.2307/2320063
  22. J.-P. Serre, Linear representations of finite groups, translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42, Springer, New York, 1977.
  23. M. Yang, Crossed products by finite groups acting on low dimensional complexes and applications, PhD Thesis, University of Saskatchewan, 1997.