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BREDON HOMOLOGY OF WALLPAPER GROUPS

Ramón Flores

Abstract. In this paper we compute the Bredon homology of wallpaper

groups with respect to the family of finite groups and with coefficients

in the complex representation ring. We provide explicit bases of the
homology groups in terms of irreducible characters of the stabilizers.

1. Introduction

Bredon homology is one of the main instances of equivariant homology the-
ory. Roughly speaking (see definitions in Section 2), given a G-space X and a
family F of stabilizers of the action, the values of the homology are determined
by a coefficient module N which takes values in abelian groups and takes ac-
count of the structure of the family F . After their development by G. Bredon
in the sixties for the case of G finite, different choices of F have showed differ-
ent roles of this homology theory in contexts as equivariant obstruction theory
[17], partition complexes [2], stable homotopy [8] or group dimension theory
[10]. The computation of the Bredon homology groups has been particularly
important in relation with the isomorphism conjectures (see a survey in [13]),
as they may permit the computation of K-theory groups via an equivariant
version of the Atiyah-Hirzebruch spectral sequence. In this framework, when
X is the classifying space EG for proper actions of G (see Section 2.2 below),
the Bredon homology of EG is an invariant of the group G, and in this case
we will directly say the “Bredon homology of G”.

We deal in the sequel with the Bredon homology of the crystallographic
groups of the plane (also called wallpaper groups), with respect to the family
of finite subgroups and with coefficients in the complex representation ring.
This coefficient module codifies the complex representation theory of the finite
subgroups of the group, and is relevant in relation with the Baum-Connes
conjecture, the best known of the isomorphism conjectures. Recall that this
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statement identifies the equivariant K-homology of the space EG with the K-
theory of the reduced C∗-algebra of G. The conjecture is true for wallpaper
groups, as they are solvable (see Section 2.1), and the corresponding values
of K∗(C

∗
rG) were computed in his thesis by Yang ([23], see also Lück-Stamm

[14], where in particular a little mistake in Yang’s results is corrected). Other
computations of Bredon homology in the context of Baum-Connes conjecture
may be found for example in [1, 11,20].

The main goal of this paper is to offer explicit computations of the Bredon
homology group of wallpaper groups. By “explicit” we mean giving bases of
the homology groups (as abelian groups) in terms of irreducible characters of
representations of finite stabilizers of the action of the groups, as well as a de-
tailed description of the Bredon complex and the corresponding differentials.
Aside the information which is obtained in this way about the representation
theory of the group, the motivation of the study has come from the following
problem. Consider a group G which is a colimit of wallpaper groups, and try to
compute the left-hand side of Baum-Connes for G (this is, for example, the case
of different extensions of SL(2,Z) by Z2). A possible strategy is to obtain the
Bredon homology of G out of the Bredon homologies of the wallpaper groups
involved in the colimit, but this computation involve a precise knowledge of
the induced homomorphisms in homology, and in particular of concrete gener-
ators of each group in the diagram, which is the kind of information that our
study provides. Moreover, we also expect that our results may permit a sharp
description of the Baum-Connes’ assembly map for wallpaper groups, as in for
example [3, 7, 19]. Finally, we are aware that Yang and Lück-Stamm results,
and also the computational approach by Bui-Ellis [4], provide the isomorphism
type (as abstract groups) of some of these Bredon homology groups, but as
said above, we believe that the main contribution of the present paper is the
explicit description of the groups.

The structure of the paper is as follows.
In Section 2 we give the necessary information about wallpaper groups,

classifying spaces, Bredon homology, representation theory and Smith normal
forms in order to make the paper as self-contained as possible.

In particular, Section 2.4 contains all the relevant information about the
representation theory of the stabilizers.

Section 3 contains all the computations of Bredon homology groups, with a
little introduction in which we explain the steps we follow in each calculation.

Acknowledgments. We warmly thank D. Schattschneider for the permission
to reproduce the picture (Figure 2.1) of the patterns of the wallpaper groups
that appear in the nice paper [21]. We also thank J. González-Meneses for
helpful comments, and S. Pooya, A. Zumbrunnen and in particular A. Valette
for providing the motivation for this work.
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2. Preliminaries

2.1. Wallpaper groups

In this subsection we recall the main features of the wallpaper groups, which
are the main object of study of this paper. Nice surveys of the theory can be
found in [15, 21], while presentations by generators and relations for all the
wallpaper groups are given in [6].

We start with the definition:

Definition. A discrete group G of isometries of the plane R2 is called a wall-
paper group if the action of G on the plane is properly discontinuous and the
quotient R2/G is compact.

There are exactly seventeen non-isomorphic wallpaper groups, as was in-
dependently proved by Fedorov and Schoenflies. Every such group G is in
particular defined by an extension:

Z2 → G → F,

where F is a finite group, called the point group of the wallpaper group. The
generators of the free abelian group correspond to two independent translations,
and the images of a certain compact pattern of the plane by these translations
tessellate it (this is the reason of the name wallpaper). In Figure 2.1 such
patterns are pictured for all these groups, and the fact that they tessellate, and
then contain a fundamental domain for the action, will be often used implicitly
in Section 4, when a representative of class of equivariant 2-cells for a G-CW
complex structure is defined for every wallpaper group.

These groups can also possess rotations, reflections and glide-reflections,
corresponding in particular rotations and reflections with torsion elements of
the groups. In Figure 2.1 the rotation centers contained in the pattern can be
observed, as well as the reflection and glide-reflection axes. We will use this
picture as a major source of information in the computations of Section 3.

In Table 1 we have compiled some relevant information about the wallpaper
groups that will useful for us. In the second column there and throughout the
paper we will denote by Dn the dihedral group of 2n elements. In turn, the
cyclic group of n elements will be denoted indistinctly by Cn or Z/n in all the
sequel. The third column of the table explain if the extension that defines the
group splits or not. In the fourth the torsion primes of every group can be
found: observe that p1 and pg are the only torsion-free instances. Finally, in
the fifth column, we distinguish 2- and 4- rotations when there are 2-rotations
which in the groups that have no roots; and same for 2-, 3- and 6-rotations in
p6 and p6m.

In next section we will define the classifying space for proper actions, which
is fundamental in our computations, and in particular we will recall the appro-
priate model of this space for wallpaper groups.
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Figure 2.1. Patterns for the wallpaper groups

Table 1. Wallpaper groups

Group Point group Split Torsion Rotations Reflections Glide-reflections
p1 {1} - No No No No
p2 C2 Yes 2 2- No No
pm C2 Yes 2 No Yes No
pg C2 No No No No Yes
cm C2 Yes 2 No Yes Yes

pmm D2 Yes 2 2- Yes No
pmg D2 No 2 2- Yes Yes
pgg D2 No 2 2- No Yes
cmm D2 Yes 2 2- Yes Yes
p4 C4 Yes 2 2-,4- No No
p4m D4 No 2 2-,4- Yes Yes
p4g D4 Yes 2 2-,4- Yes Yes
p3 C3 Yes 3 3- No No

p3m1 D3 Yes 2,3 3- Yes Yes
p31m D3 Yes 2,3 3- Yes Yes
p6 C6 Yes 2,3 2-,3-,6- No No
p6m D6 Yes 2,3 2-,3-,6- Yes Yes

2.2. Classifying space for proper actions

The main geometric object in this paper is the classifying space for proper
actions, so we will recall the necessary definitions here. We refer the reader
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to [12] for a thorough exposition about the subject, and to [5] for generalities
about group actions and G-CW-complexes.

Definition. Let G be a discrete group, F a family of subgroups closed under
conjugation and subgroups. Then a G-CW-complex EFG is called a classifying
space for the family F if given a subgroup H < G, the fixed point set EFG

H

is contractible if H ∈ F and empty otherwise.

Observe that the definition implies that the stabilizers of the action of G
belong to F . It can be proved that this space is unique up to homotopy
equivalence.

When F is the trivial family, EFG = EG, the universal space for G-principal
bundles. On the other hand, when F is the family of finite subgroups ofG, EFG
is usually denoted by EG, and called the classifying space for proper actions of
G. As stated in the introduction, this is the main object of interest of the left-
hand side of Baum-Connes, and the computation of its Bredon homology for
wallpaper groups G is the main goal of this paper. In fact, these computations
are feasible because there is a very simple model available for EFG in this case:

Theorem 2.1. Let G be a wallpaper group, and consider the usual action of
G on the plane via isometries. Then R2 is a model for EG.

Proof. See Section 4 of [14]. □

The good knowledge of the actions of these groups of the plane will make
possible the computation of the Bredon homology group. In next section we
will recall the necessary definitions of this equivariant homology theory.

2.3. Bredon homology

We recall in this section the main facts concerning Bredon homology, which
is the main invariant we will deal with in this paper. We only review the topo-
logical version, following the approach of [20]; a good exposition that includes
the algebraic version can be found in [18].

Let G be a discrete group, F a family of groups which is closed under
conjugation and taking subgroups. Consider the orbit category OF (G), whose
objects are the homogeneous spaces G/K, K ⊂ G with K ∈ F , and whose
morphisms are the G-equivariant maps. Then a left Bredon module N over
OF (G) is a covariant functor

N : OF (G) → Ab,

where Ab is the category of abelian groups.
Now consider a left Bredon module N and a G-CW-complex X, and assume

that all the stabilizers of the G-action belong to the family F . Then the Bredon
chain complex (Cn,Φn) can be defined in the following way. For every d ≥ 0,
consider a set {edi }i∈I of representatives of orbits of d-cells in X, and denote by
stab(edi ) the stabilizer of edi . Then we define the n-th group of Bredon chains
as Cd =

⊕
i∈I N(G/stab(edi )).
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Now, consider a (d − 1)-face of edi , which can be given as ge for a certain
(d− 1)-cell e. Then we have an inclusion of stabilizers g−1stab(edi )g ⊆ stab(e).
As g−1stab(edi )g and stab(edi ) are isomorphic, the previous inclusion induces an
equivariant G-map f : G/stab(edi ) → G/stab(e). In turn, as N is a functor, we
have an induced homomorphism N(f) : N(G/stab(edi )) → N(G/stab(e)). Tak-

ing into account that the boundary of edi can be written as ∂edi =
∑n

j=1 e
d−1
j gj

for certain gj ∈ G and using linear extension to all representatives of equivari-
ant d-cells, we obtain a differential Φd : Cd → Cd−1 for every d > 0. So have
the following definition:

Definition. The homology groups of the chain complex (Ci,Φi) will be de-
noted by HF

i (X,N) and called Bredon homology groups of G with coefficients
in N with respect to the family F .

These groups are an invariant of the G-homotopy type of X.
In this paper we are interested in Bredon homology with coefficients in the

complex representation ring. In the next section we recall the definition of this
coefficient module.

2.4. Representation theory

We refer the reader to the classic book of Serre [22] for all the basic concepts
concerning complex representation theory of finite groups and their characters.

As said above, we compute Bredon homology with respect to the family of
the finite subgroups with coefficients in the representation ring Bredon module
RC. This module is defined in the following way. Given a group G, the functor
RC : Or(G) → Ab is defined over objects as RC(G/K) = RC(K) the complex
representation ring ofK. To define the functor over morphisms, observe that for
any equivariant map f : G/K → G/H there exists g ∈ G such that gKg−1 ⊆
H. As RC(gKg−1) = RC(K), we can define R(f) : RC(K) → RC(K) by
induction from the subgroup inclusion gKg−1 ⊆ H. A detailed exposition
about the properties of this functor can be found in [18, Section 3].

To compute the differentials in the Bredon chain complex, we will need to
know the homomorphisms between representation rings that are induced by
inclusion of stabilizers in the wallpaper groups. In order to do so, we recall the
structure of these rings as abelian groups and bases of irreducible characters in
Table 2. There, the first element of each basis will always represent the trivial
representation. In the case of D3, which is isomorphic to the symmetric group
S3, χ2 stands for the sign representation and χ3 for the standard representation.
For the dihedral groups, ϕi stand for the characters that correspond to 2-
dimensional irreducible representations.

Finally, in Table 3 we describe explicitly the homomorphisms between the
representation rings of the stabilizers, which are easily obtained using the char-
acter tables of the groups and Frobenius reciprocity (see [22, Ch. 2]). For the
groups in the left-hand side of the homomorphisms (always the trivial group or



BREDON HOMOLOGY OF WALLPAPER GROUPS 1503

Table 2. Representation theory of stabilizers

Group Representation ring Basis
Cn Zn ⟨χ1, . . . , χn⟩
D2 Z4 ⟨χ1, χ2, χ3, χ4⟩
D3 Z3 ⟨χ1, χ2, χ3⟩
D4 Z5 ⟨χ1, χ2, χ3, χ4, ϕ⟩
D6 Z6 ⟨χ1, χ2, χ3, χ4, ϕ1, ϕ2⟩

C2) the generators will be denoted by the letter ρ, being ρ1 the trivial repre-
sentation in the case of C2. The notation ρ ↑ means, in each line, that we are
giving the character induced by ρ via the group inclusion of the left. In lines
10-17, C1

2 is the conjugacy class of an order 2 element with non-trivial roots
in Dn, while C2

2 corresponds to an element with no non-trivial roots. For the
characters in the right-hand side we keep the notation of Table 2.

Table 3. Induced characters on stabilizers

Inclusion Induced character Image
1 {1} ↪→ Cn ρ ↑ χ1 + . . .+ χn

2 {1} ↪→ D2 ρ ↑ χ1 + χ2 + χ3 + χ4

3 {1} ↪→ D3 ρ ↑ χ1 + χ2 + 2χ3

4 {C2} ↪→ C2 ρ1 ↑ χ1

5 {C2} ↪→ C2 ρ2 ↑ χ2

6 {C2} ↪→ D2 ρ1 ↑ χ1 + χ2

7 {C2} ↪→ D2 ρ2 ↑ χ3 + χ4

8 {C2} ↪→ D3 ρ1 ↑ χ1 + χ3

9 {C2} ↪→ D3 ρ2 ↑ χ2 + χ3

10 {C1
2} ↪→ D4 ρ1 ↑ χ1 + χ2 + χ3 + χ4

11 {C1
2} ↪→ D4 ρ2 ↑ 2ϕ

12 {C2
2} ↪→ D4 ρ1 ↑ χ1 + χ3 + ϕ

13 {C2
2} ↪→ D4 ρ2 ↑ χ2 + χ4 + ϕ

14 {C1
2} ↪→ D6 ρ1 ↑ χ1 + χ2 + 2ϕ2

15 {C1
2} ↪→ D6 ρ2 ↑ χ3 + χ4 + 2ϕ1

16 {C2
2} ↪→ D6 ρ1 ↑ χ1 + χ3 + ϕ1 + ϕ2

17 {C2
2} ↪→ D6 ρ2 ↑ χ2 + χ4 + ϕ1 + ϕ2

2.5. Smith normal form

When computing the Bredon homology of wallpaper groups, the computa-
tion of the Smith normal form of a matrix is necessary, in order to describe the
groups and also for obtaining explicit bases, which is one of the main goals of
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this paper. A thorough treatment on the subject can be found in [9], and we
recall briefly here the main results that are used in the paper.

Let A be an m × n matrix with integer entries. Then there always exist
invertible matrices P and Q of size m and n, respectively, such that the matrix
D = PAQ has the following shape:

• For a certain k ≤ min(m,n) and for every i ≤ k, the entries dii of the
matrix D are nonzero integers.

• For every i ≤ k, dii divides di+1,i+1.
• The remaining entries of D are zero.

The matrix D is called the Smith normal form of A (usually abbreviated
SNF) and is unique up to signs of the dii. The non-trivial entries are called
the invariant factors or the elementary divisors of A.

We will use the Smith normal form to describe kernels and cokernels of
homomorphisms between free abelian groups. Consider then a homomorphism
f : Zn → Zm, and the associated matrix A of size m×n. Let SNF (A) = PAQ
be a decomposition of the Smith normal form, and (d1, . . . , dk) the invariant
factors. Then we have the following:

• Assume |dj | > 1, |dj−1| = 1, or dj = d1 if |d1| > 1. Then the cokernel
of f is isomorphic to Z/(dj)× · · · × Z/(dk)× Zm−k.

• The images of the lastm−k column vectors of P−1 under the projection
Zm → Cokerf produce a basis of the torsion-free part of Cokerf .

• The last n− k column vectors of Q provide a basis for the kernel of f .

These results will be essential when computing the Bredon homology groups.

Remark 2.2. There are different algorithms to compute the Smith normal form
of a matrix. The computations for this paper have been performed used the
algorithm implemented in [16]. The outcome of our computations, including
Smith normal forms and auxiliary matrices, is available on request.

3. Bredon homology of wallpaper groups

In this section we undertake the main goal of this paper, which is the explicit
computation of the Bredon homology of the wallpaper groups, with respect to
the family of finite subgroups. Some notation will be required at this point.
In general, for any of the wallpaper groups, a representative of a class of equi-
variant i-cells will be denoted by eji . When there is only one equivariant i-cell
the superscript will be suppressed. The irreducible characters in the represen-
tations rings of the stabilizers of 0-cells will be denoted by α, of stabilizers of
1-cells by the letter β, and of stabilizers of 2-cells by the letter γ. The homol-
ogy classes in every chain group will be denoted by brackets. If H < K is an
inclusion of stabilizers and χ is a character on H, then the induced character on
K is denoted by (χ ↑ K). In the exposition we will sometimes refer to Figure
2.1 without express mention.
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In the computation of the Bredon homology of every wallpaper group we
undertake the following strategy. Starting from the pattern of the group of
Figure 2.1 and taking into account that the pattern contains a fundamental
domain for the group, we describe a G-CW-complex structure in the plane
with a unique class of equivariant 2-cells and we compute the boundaries of
the 2-cells and 1-cells. Then, we describe the stabilizers of the cells and form
the corresponding Bredon chain complex. After that, using the previously
computed boundaries and the induced representations that are listed in Table
3 and taking account of the orientations, we describe the differentials of the
Bredon complex. We conclude by using the Smith normal forms of the matrices
of the differentials and their auxiliary matrices to describe the homology groups
and their bases, in terms of irreducible characters of the stabilizers.

3.1. The group p1

As the group is generated by the two translations, a representative e2 for the
equivariant 2-cells will be given by the polygon in Figure 2.1. Call O the lower
vertex of the polygonD in its left-hand side. Then the remaining vertices, going
clockwise, are P = g1O, Q = g2O and R = g3O for three elements gi ∈ p1.
We then consider just one class of p1-equivariant 0-cells in the plane, and we
choose the representative e0 corresponding to the vertex O. In this structure,
there are two equivariant 1-cells, which are represented by the edges e01 = OP
and e21 = PQ. Hence, the boundaries with respect to the orbit representatives
are given by:

∂e2 = e01 + e11 + g3e
0
1 + g1e

1
1,

∂e01 = g1e0 − e0,

∂e11 = g2e0 − g1e0.

As this group is torsion-free, all the stabilizers of the equivariant cells are
trivial. Then the Bredon chain complex has the shape:

0 → Zγ → Zβ1 ⊕ Zβ2 → Zα → 0.

Now we have:

Φ2(γ) = (γ ↑ stab(e01)) + (γ ↑ stab(e11))− (γ ↑ stab(e01))− (γ ↑ stab(e11)) = 0,

Φ1(β1) = (β1 ↑ stab(e00))− (β1 ↑ stab(e00)) = 0,

Φ1(β2) = (β2 ↑ stab(e00))− (β2 ↑ stab(e00)) = 0.

Hence, the differentials in the Bredon complex are trivial, and we obtain
HF

2 (p1, RC) = Z[γ], HF
1 (p1, RC) = Z[β1]⊕ Z[β2] and HF

0 (p1, RC) = Z[α].

3.2. The group p2

Consider the lower half of the polygon in Figure 2.1, which will be a rep-
resentative for the equivariant 2-cell e2. We consider the five vertices in this
lower half of the picture, and also the center of the polygon. Starting from the
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lower left-hand side vertex and counting clockwise, we denote the vertices by
O, P , Q, R, S and T . We consider four classes of 0-cells, with representatives
e00, e

1
0, e

2
0 and e30 that correspond, respectively, to the vertices O, P , Q and T .

Observe that R is the image of P under the rotation r1 of center Q, and S is the
image of O under the rotation r2 of center T . In turn, there are three classes
of 1-cells, with representatives e01, e

1
1 and e21 that correspond to the edges OP ,

PQ and ST . Hence, if t is the horizontal translation, we have the boundaries:

∂(e2) = e01 + e11 + r1e
1
1 + te01 + e21 + r2e

2
1,

∂(e01) = e10 − e00,

∂(e11) = e20 − e10,

∂(e21) = e30 − e00.

The only nontrivial stabilizers correspond to the 0-cells (which are 2-centers
of rotation), and are all isomorphic to C2. Then the chain complex is:

0 → Zγ →
2⊕

i=0

Zβi →
3⊕

i=0

(Zα1
i ⊕ Zα2

i ) → 0.

Taking account of line 1 in Table 3, the differentials are defined in the fol-
lowing way:

Φ2(γ) = (γ ↑ stab(e01)) + (γ ↑ stab(e11))− (γ ↑ stab(e11))

− (γ ↑ stab(e01)) + (γ ↑ stab(e21))− (γ ↑ stab(e21)) = 0,

Φ1(β0) = (β0 ↑ stab(e10))− (β1 ↑ stab(e00)) = α1
1 + α2

1 − α1
0 − α2

0,

Φ1(β1) = (β1 ↑ stab(e20))− (β2 ↑ stab(e10)) = α1
2 + α2

2 − α1
1 − α2

1,

Φ1(β2) = (β2 ↑ stab(e30))− (β2 ↑ stab(e00)) = α1
3 + α2

3 − α1
0 − α2

0.

Now computing the Smith normal form of the matrix of Φ1 we obtain that
the invariant factors of Φ1 are (1, 1, 1). As Φ2 is trivial, this implies that
HF

2 (p2, RC) = Z, HF
1 (p2, RC) = 0 and HF

0 (p2, RC) = Z5.
It is clear that a basis for HF

2 (p2, RC) is [γ]. In turn, the matrix Q obtained
in the computation of the SNF shows that a basis of HF

0 (p2, RC) is given by
([α1

0], [α
2
0], [α

2
1], [α

2
2], [α

2
3]).

3.3. The group pm

Again in this case a representative e2 for the unique 2-cell will be given
by the lower half of the rectangle. Consider O, P , Q and R the vertices of
this little rectangle, starting from the lower in the left-hand side edge. There
will be two classes of 0-cells, with representatives e00 and e10, that correspond,
respectively, to the vertices O and P , with Q in the class of P and R in the
class of O (the identification given by the horizontal translation t). In turn,
there are two classes of 1-cells, with representatives e01, e

1
1 and e21, given by the
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edges OP , PQ and RP , respectively. Observe that RQ is the image of OP
under t. Now we can compute the boundaries:

∂(e2) = e01 + e11 + te01 + e21,

∂(e01) = e10 − e00,

∂(e11) = te10 − e10,

∂(e21) = e00 − te00.

Now the vertices and the edges e11 and e21 are in rotation axes, so their
stabilizers are isomorphic to C2, while the stabilizer of the remaining edge is
trivial. The the Bredon chain complex takes the following shape:

0 → Zγ → Zβ0 ⊕ Zβ1
1 ⊕ Zβ2

1 ⊕ Zβ1
2 ⊕ Zβ2

2 →
1⊕

i=0

(Zα1
i ⊕ Zα2

i ) → 0.

Now we can compute the differentials, taking account of line 1 in Table 3:

Φ2(γ) = (γ ↑ stab(e01)) + (γ ↑ stab(e11))− (γ ↑ stab(e01)) + (γ ↑ stab(e21))

= β1
1 + β2

1 + β1
2 + β2

2 ,

Φ1(β0) = (β0 ↑ stab(e10))− (β1 ↑ stab(e00)) = α1
1 + α2

1 − α1
0 − α2

0,

Φ1(β
1
1) = (β1

1 ↑ stab(e10))− (β1
1 ↑ stab(e10)) = 0,

Φ1(β
2
1) = (β2

1 ↑ stab(e10))− (β2
1 ↑ stab(e10)) = 0,

Φ1(β
1
2) = (β1

2 ↑ stab(e00))− (β1
1 ↑ stab(e00)) = 0,

Φ1(β
2
2) = (β2

2 ↑ stab(e00))− (β2
1 ↑ stab(e00)) = 0.

We compute the SNF of the matrices of Φ2 and Φ1 and we, respectively, ob-
tain that the invariant factors are (1) and (1). This implies thatHF

2 (pm, RC) =
0, HF

1 (pm, RC) = Z3 and HF
0 (pm, RC) = Z3.

Now, the matrix Q obtained in the computation of the SNF for Φ1 and the
definition of Φ2 show that a basis of HF

1 (pm, RC) is given by ([β1
1 ], [β

2
1 ], [β

1
2 ]),

while a basis for HF
0 (pm, RC) is given by ([α2

0], [α
1
1], [α

2
1]).

3.4. The group pg

Here we divide the (big) rectangle in Figure 2.1 in two equal rectangles by
a vertical line; then the left one will be a representative e2 of the unique class
of 2-cells. Consider the vertices O,P,Q,R of this rectangle, counting clockwise
from the left-hand lower vertex O. Observe that P is the image of O under
vertical translation, Q under glide-reflection, and R under the composition of
both. Hence, there will also be a unique class of 0-cells, and we denote by e0 the
representative given by O. In turn, there are two classes of 1-cells, identified by
OP and PQ, which we, respectively, denote e01 and e11. Hence, if we call t the
vertical translation (going upwards) and g the glide reflection, the boundaries
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of the representatives are defined in the following way:

∂(e2) = e01 + e11 + ge01 + t−1e11,

∂(e01) = te00 − e00,

∂(e11) = ge00 − te00.

The group pg is torsion-free, and hence all its stabilizers are trivial. This
time the chain complex is quite simple:

0 → Zγ → Zβ0 ⊕ Zβ1 → Zα → 0.

Now we compute the differentials of the complex:

Φ2(γ) = (γ ↑ stab(e01)) + (γ ↑ stab(e11)) + (γ ↑ stab(e01))− (γ ↑ stab(e11))

= 2β0,

Φ1(β0) = (β0 ↑ stab(e00))− (β0 ↑ stab(e00)) = 0,

Φ1(β
1) = (β1 ↑ stab(e00))− (β1 ↑ stab(e00)) = 0.

As Φ1 is trivial, H
F
0 (pg, RC) = Z. On the other hand, the invariant factor of

the SNF of the matrix of Φ2 is (2), soH
F
1 (pg, RC) = Z⊕Z/2 andHF

2 (pg, RC) =
0.

By construction it is easy to see here that a basis for HF
0 (pg, RC) is given

by [α], while [β0] and [β1] generate, respectively, the torsion part and the free
part of HF

1 (pg, RC).

3.5. The group cm

Here our representative e2 of the class of equivariant 2-cells will be given by
the lower half of the rhombus. We denote its vertices by O, P and Q, starting
from the one in the left and counting anti-clockwise. The horizontal translation
t takes O to Q, while a glide-reflection sends O to P and P to Q. Then, again
we consider a unique class of equivalence of 0-cells, whose representative e0 is
identified with O. There are also two classes of 1-cells, whose representatives
e01 and e11 we identify with OP and QR (observe that PQ is the image of OP
under the glide-reflection g). Now the boundaries are given by:

∂(e2) = e01 + ge01 + e11,

∂(e01) = ge00 − e00,

∂(e11) = e00 − g2e00.

Observe that both e00 and e11 lie in a reflection axis, so their stabilizers are
isomorphic to C2. On the other hand, the stabilizer of the other edge is trivial,
and hence we have the following Bredon chain complex:

0 → Zγ → Zβ0 ⊕ Zβ1
1 ⊕ Zβ2

1 → Zα1 ⊕ Zα2 → 0.
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The differentials are quite simple in this case, taking again account of line 1
in Table 3:

Φ2(γ) = (γ ↑ stab(e01)) + (γ ↑ stab(e01)) + (γ ↑ stab(e11)) = 2β0 + β1
1 + β2

1 ,

Φ1(β0) = (β0 ↑ stab(e00))− (β0 ↑ stab(e00)) = 0,

Φ1(β
1) = (β1 ↑ stab(e00))− (β1 ↑ stab(e00)) = 0.

Again the triviality of Φ1 immediately implies HF
0 (cm, RC) = Z2. On the

other hand, the unique invariant factor of the SNF of the matrix of Φ2 is (1),
so HF

1 (cm, RC) = Z2 and HF
2 (cm, RC) = 0.

It is clear that a basis of HF
0 (cm, RC) is given by [α1] and [α2], while the

definition of Φ2 implies that [β1
1 ] and [β2

1 ] form a basis for HF
1 (cm, RC).

3.6. The group pmm

Here the lower left small square can be taken a representative e2 of the
equivariant class of 2-cells under the action of pmm. We consider the four
vertices O, P , Q and R of this small square, starting as always in the lower
one of the left-hand side, and counting clockwise. Each of this edges will
correspond, respectively, to a representatives of different classes of 0-cells, say
e00, e

1
0, e

2
0 and e30. In turn, there will be also four representatives of classes of

1-cells, namely e01, e
1
1, e

2
1 and e31, which we, respectively, identify with the edges

OP , PQ, QR and RP. The boundaries in this case are easy, because the group
makes no identifications inside the small square:

∂(e2) = e01 + e11 + e21 + e31,

∂(e01) = e10 − e00,

∂(e11) = e20 − e10,

∂(e21) = e30 − e20,

∂(e31) = e00 − e30.

In this model all the edges lie on reflection axes, and there no other relevant
isometries. Hence, all the stabilizers of the edges are isomorphic to C2. In turn,
every vertex lie in two different reflection axes, so the stabilizers of the vertices
are isomorphic to D2. The Bredon complex takes then the following shape:

0 → Zγ →
3⊕

i=0

(β1
i ⊕ β2

i ) →
3⊕

i=0

(α1
i ⊕ α2

i ⊕ α3
i ⊕ α4

i ) → 0.

Taking account of lines 1, 6 and 7 in Table 3, we compute the differentials:

Φ2(γ) = (γ ↑ stab(e01)) + (γ ↑ stab(e11)) + (γ ↑ stab(e21)) + (γ ↑ stab(e31))

=

3∑
i=0

2∑
j=1

βj
i ,

Φ1(β
1
0) = (β1

0 ↑ stab(e10))− (β0 ↑ stab(e00)) = α1
1 + α2

1 − α1
0 − α2

0,



1510 R. FLORES

Φ1(β
2
0) = (β2

0 ↑ stab(e10))− (β0 ↑ stab(e00)) = α3
1 + α4

1 − α3
0 − α4

0,

Φ1(β
1
1) = (β1

1 ↑ stab(e20))− (β0 ↑ stab(e10)) = α1
2 + α2

2 − α1
1 − α3

1,

Φ1(β
2
1) = (β2

1 ↑ stab(e20))− (β0 ↑ stab(e10)) = α3
2 + α4

2 − α2
1 − α4

1,

Φ1(β
1
2) = (β1

2 ↑ stab(e30))− (β0 ↑ stab(e20)) = α1
3 + α2

3 − α1
2 − α3

2,

Φ1(β
2
2) = (β2

2 ↑ stab(e30))− (β0 ↑ stab(e20)) = α3
3 + α4

3 − α2
2 − α4

2,

Φ1(β
1
3) = (β1

3 ↑ stab(e00))− (β0 ↑ stab(e30)) = α1
0 + α3

0 − α1
3 − α3

3,

Φ1(β
2
3) = (β2

3 ↑ stab(e00))− (β0 ↑ stab(e30)) = α2
0 + α4

0 − α2
3 − α4

3.

Observe that when we described the differentials, we have taken into account
that two coincident edges define different subgroups (isomorphic to C2) in the
stabilizer of the common vertex.

We now compute the SNF of the matrices of Φ2 and Φ1 and we obtain that
the invariant factors are (1) and (1, 1, 1, 1, 1, 1, 1), respectively. This implies
that HF

2 (pmm, RC) = 0, HF
1 (pmm, RC) = 0 and HF

0 (pmm, RC) = Z9.
Finally, the last columns of the matrix Q obtained in the computation of the

SNF for Φ1 show that a basis for HF
0 (pm, RC) is given by ([α3

0], [α
3
1], [α

4
1], [α

3
2],

[α4
2], [α

1
3], [α

2
3], [α

3
3], [α

4
3]).

3.7. The group pmg

A representative e2 for the class of equivariant 2-cells in pmg will given by
any of the two rectangles of the picture in Figure 2.1 whose horizontal edges are
reflection axes, so we choose for example the left one. We consider six vertices
on it: the four vertices given by the corners of the rectangle, an the marked
rotation centers in the middle points of the vertical sides. Starting from the
lower vertex of the left-hand side of the rectangle and going clockwise, we call
these vertices O, P , Q, R, S and T . Then, representatives of the four classes
e00, e

1
0, e

2
0 and e30 of equivariant 0-cells will be, respectively, given by the vertices

O, P , R and S. Remark that Q is the image of O under the rotation r1 of
center P , and T is the image of R under the rotation r2 of center S. There
will also four classes of equivariant 1-cells, whose representatives e01, e

1
1, e

2
1 and

e31 are identified with OP , QR, RS and TP . Observe that r1(OP ) = QP and
r2(RS) = TS. We are now ready to compute the boundaries:

∂(e2) = e01 + r1e
0
1 + e11 + e21 + r2e2 + e31,

∂(e01) = e10 − e00,

∂(e11) = e20 − r1e
0
0,

∂(e21) = e30 − e20,

∂(e31) = e00 − r2e
2
0.

Now, the horizontal edges of the rectangle are in reflection axes, and same
happens to the vertices e00 and e20, so the stabilizers of the corresponding cells
are isomorphic to C2. As e10 and e30 are centers of 2-rotation the stabilizers are
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also isomorphic to C2. Finally, the group acts freely over the classes of e01 and
e01, so we can form the Bredon chain complex:

0 → Zγ →Zβ0 ⊕ Zβ1
1 ⊕ Zβ2

1 ⊕ Zβ1
2 ⊕ Zβ2

2 ⊕ Zβ3

→
2⊕

i=1

Zαi
0 ⊕

2⊕
i=1

Zαi
1

2⊕
i=1

Zαi
2

2⊕
i=1

Zαi
3 → 0.

Let us compute the differentials of the complex, taking account of line 1 in
Table 3:

Φ2(γ) = (γ ↑ stab(e01))− (γ ↑ stab(e01)) + (γ ↑ stab(e11)) + (γ ↑ stab(e21))

− (γ ↑ stab(e21)) + (γ ↑ stab(e31)) = β1
1 + β2

1 + β1
2 + β2

2 ,

Φ1(β0) = (β0 ↑ stab(e10))− (β0 ↑ stab(e00)) = α1
1 + α2

1 − α1
0 − α2

0,

Φ1(β
1
1) = (β2

0 ↑ stab(e20))− (β1
1 ↑ stab(e00)) = α1

2 + α1
0,

Φ1(β
2
1) = (β2

1 ↑ stab(e20))− (β2
1 ↑ stab(e00)) = α2

2 + α2
0,

Φ1(β
1
2) = (β1

2 ↑ stab(e30))− (β1
2 ↑ stab(e20)) = α1

3 + α2
3 − α1

2 − α2
2,

Φ1(β
2
2) = (β2

2 ↑ stab(e30))− (β2
2 ↑ stab(e20)) = α1

0 + α1
2,

Φ1(β3) = (β3 ↑ stab(e00))− (β3 ↑ stab(e20)) = α2
0 + α2

2.

From the SNF of the matrices of Φ2 and Φ1 it is obtained that the invariant
factors are (1) and (1, 1, 1, 1), respectively. This implies that HF

2 (pmg, RC) =
0, HF

1 (pmg, RC) = Z and HF
0 (pmg, RC) = Z4.

In turn, the matrices P and Q obtained in the computation of the Smith
normal forms show that a basis for HF

0 (pmg, RC) is given ([α2
1], [α

1
2], [α

2
2], [α

2
3])

and a basis for HF
1 (pmg, RC) is given by [β1

1 + β1
2 ].

3.8. The group pgg

For this group, a representative e2 for the class of equivariant 2-cells will
be given for example by the triangle determined by the middle points of the
vertical sides and the center of the lower horizontal side of the (big) rectangle
of the picture in Figure 2.1. Consider these three vertices and the center of
the rectangle, and call them O, P , Q and R, starting from the middle point
of the left vertical side and counting clockwise. Then representatives e00 and
e10 for the classes of 0-cells will be given by O and P , being Q the image of O
under a rotation r of center P and R the image of O under a glide-reflection g.
Representatives e01 and e11 for the classes of 1-cells are given by RO and OP ,
respectively, being QP = r(OP ) and RQ = g(OR). Now the boundaries are
defined in the following way:

∂(e2) = e11 + re11 + ge01 + e01,

∂(e01) = ge00 − e00,

∂(e11) = e10 − e00.



1512 R. FLORES

The two representatives of 0-cells are centers of 2-rotation, and then their
stabilizers are isomorphic to C2. On the other hand, the group acts freely over
the classes of e01 and e11, so we obtain the following Bredon complex:

0 → Zγ → Zβ0 ⊕ Zβ1 → Zα1
0 ⊕ Zα2

0 ⊕ Zα1
1 ⊕ Zα2

1.

The differentials of the chain complex are now given in the following way,
taking account of line 1 in Table 3:

Φ2(γ) = (γ ↑ stab(e11))− (γ ↑ stab(e11)) + (γ ↑ stab(e01)) + (γ ↑ stab(e01))

= 2β1,

Φ1(β0) = (β0 ↑ stab(e10))− (β0 ↑ stab(e00)) = α1
1 + α2

1 − α1
0 − α2

0,

Φ1(β1) = (β1 ↑ stab(e00))− (β1 ↑ stab(e00)) = 0.

Now the Smith normal form of the matrices of Φ2 and Φ1 gives, respec-
tively, the invariant factors (2) and (1). Hence, we have HF

2 (pgg, RC) = 0,
HF

1 (pgg, RC) = Z/2 and HF
0 (pgg, RC) = Z3.

Also, the matrices P and Q obtained in the computation of the Smith normal
forms show that a basis for HF

0 (pgg, RC) is given by ([α2
1], [α

1
2], [α

2
2]) and a

generator for HF
1 (pgg, RC) is given by [β0].

3.9. The group cmm

Consider the four triangles inside the rhombus in the figure. A representative
e2 for the equivalence class of 2-cells will be given by the lower left-hand side
triangle. Starting from the left and going clockwise, denote by O, P and Q
the vertices of this triangle, and by R the middle point of the diagonal side.
Then there will be three representatives e00, e

1
0 and e20 of the classes of 0-cells,

corresponding, respectively, to the vertices O and P and R; observe that Q is
the image of P under the 2-rotation r whose center is R. In turn, there are
three classes of 1-cells, with representatives e01, e

1
1 and e21 identified, respectively,

with OP , PQ and QR. For the remaining edge we have r(QR) = RP . Let us
describe now the boundaries:

∂(e2) = e01 + e11 + e21 + re21,

∂(e01) = e10 − e00,

∂(e11) = re00 − e00,

∂(e21) = e20 − re00.

Now, in both e00 and e10 two reflection axes cross, an hence the stabilizers
of these two cells are isomorphic to D2. As e20 is a center of 2-rotation, its
stabilizer is C2. Concerning the 1-cells, e01 and e11 are in reflection axes, so their
stabilizer is C2, while the group act freely over the class of e21. Hence we have
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the chain complex:

0 → Zβ1
0 ⊕ Zβ2

0 ⊕ Zβ1
1 ⊕ Zβ2

1 ⊕ Zβ2 →
4⊕

i=1

Zαi
0

4⊕
i=1

Zαi
1

2⊕
i=1

Zαi
2 → 0.

Taking account of lines 1, 2, 6 and 7 in Table 3, the differentials in this case
are given by:

Φ2(γ) = (γ ↑ stab(e01)) + (γ ↑ stab(e11)) + (γ ↑ stab(e21))− (γ ↑ stab(e21))

= β1
0 + β2

0 + β1
1 + β2

1 ,

Φ1(β
1
0) = (β1

0 ↑ stab(e10))− (β1
0 ↑ stab(e00)) = α1

1 + α2
1 − α1

0 − α2
0,

Φ1(β
2
0) = (β2

0 ↑ stab(e10))− (β2
0 ↑ stab(e00)) = α3

1 + α4
1 − α3

0 − α4
0,

Φ1(β
1
1) = (β1

1 ↑ stab(e00))− (β1
1 ↑ stab(e10)) = α1

0 + α3
0 − α1

1 − α3
1,

Φ1(β
2
1) = (β2

1 ↑ stab(e00))− (β2
1 ↑ stab(e10)) = α2

0 + α4
0 − α2

1 − α4
1,

Φ1(β2) = (β2 ↑ stab(e20))− (β2 ↑ stab(e00)) = α1
2 + α2

2 − α1
0 − α2

0 − α3
0 − α4

0.

The SMF of the matrices of Φ2 and Φ1 give the invariant factors (2) and
(1, 1, 1, 1), respectively. This implies HF

2 (cmm, RC) = 0, HF
1 (cmm, RC) = 0

and HF
0 (cmm, RC) = Z6.

Using again the matrix Q associated to the SMF, we obtain that a basis of
HF

0 (cmm, RC) is given by ([α1
0 + α2

0], [α
3
0], [α

4
0], [α

1
1], [α

3
1], [α

2
2]).

3.10. The group p4

We divide the square in the picture in four equal squares, using the vertical
segment defined by the middle points of the horizontal sides and the horizontal
segment defined by the middle points of the vertical sides. The representative
e2 for the class of 2-equivariant cells will be the lower little square in the
left-hand side. Denote by O, P , Q and R the vertices of this little square,
starting on the upper-left and going clockwise. There are three classes of 0-
cells, whose representatives e00, e

1
0 and e20 correspond, respectively, to O, P and

R; observe that if t is the 4-rotation (counterclockwise) whose rotation center
is P , t(O) = Q. Moreover, there are two classes of 1-cells, with representatives
e01 and e11 corresponding to the sides RO and OP ; the two remaining sides can
be obtained as QP = t(OP ) and RQ = t(RO). We have the boundaries:

∂(e2) = e01 + e11 + te11 + te01,

∂(e01) = e00 − e20,

∂(e11) = e10 − e00.

Concerning the stabilizers, e10 and e20 are centers of 4-rotation, and hence
their stabilizers are isomorphic to C4; while e20 is a center of rotation of 180
degrees, so its stabilizer is C2. The group p4 acts freely on each class of 1-cells,
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so the Bredon chain complex has the following shape:

0 → Zγ → Zβ0 ⊕ Zβ1 →
2⊕

i=1

Zαi
0

4⊕
i=1

Zαi
1

4⊕
i=1

Zαi
2 → 0.

Now we can describe the differentials of the complex, taking account of line
1 in Table 3:

Φ2(γ) = (γ ↑ stab(e01)) + (γ ↑ stab(e11))− (γ ↑ stab(e11))− (γ ↑ stab(e01)) = 0,

Φ1(β0) = (β0 ↑ stab(e00))− (β0 ↑ stab(e20)) = α1
0 + α2

0 − α1
2 − α2

2 − α3
2 − α4

2,

Φ1(β1) = (β1 ↑ stab(e10))− (β1 ↑ stab(e00)) = α1
1 + α2

1 + α3
1 + α4

1 − α1
0 − α2

0.

As Φ2 = 0, it is deduced immediately that HF
2 (p4, RC) = Z. In turn, the

SMF of the matrix of Φ1 gives (1, 1) as invariant factors, so HF
1 (p4, RC) = 0

and HF
0 (cmm, RC) = Z8.

It is clear that [γ] is a basis of HF
2 (p4, RC), while the shape of the matrix Q

associated to the SNF of the matrix of Φ1 implies that a basis for HF
0 (p4, RC)

is given by ([α2
0], [α

2
1], [α

3
1], [α

4
1], [α

1
2], [α

2
2], [α

3
2], [α

4
2]).

3.11. The group p4m

All the eight triangles in the picture in Figure 2.1 whose edges are reflection
will be elements of the class of equivariant 2-cells. We choose as a representative
e2 the only one whose lower side is the left half of the lower horizontal side of
the square. Starting from the left vertex of this half and counting clockwise,
we denote by O, P and Q the vertices of the triangle. Then the representatives
e00, e

1
0 and e20 of the classes of 0-cells will be, respectively, identified with this

three points. There are also three classes for 1-cells, so we make the segments
OP , PQ and QO correspond to the representatives e01, e

1
1 and e21. We compute

the boundaries for these cells:

∂(e2) = e01 + e11 + e21,

∂(e01) = e10 − e00,

∂(e11) = e20 − e10,

∂(e21) = e00 − e20.

The stabilizers of e00 and e10 are generated by a 4-rotation and an independent
reflection, so they are both isomorphic to D4. In turn, the stabilizer of e20 is
generated by two reflections, and hence it is isomorphic to D2. As all the 1-
cells lie in reflection axes, the corresponding stabilizers are isomorphic to C2.
Hence, we obtain the following Bredon complex:

0 →
2⊕

i=1

βi
0

2⊕
i=1

βi
1

2⊕
i=1

βi
2 →

5⊕
i=1

αi
0

5⊕
i=1

αi
1

4⊕
i=1

αi
2.
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Taking account of lines 6, 7, 10, 11, 12 and 13 in Table 3, the differentials
of the chain complex are given by:

Φ2(γ) = (γ ↑ stab(e01)) + (γ ↑ stab(e11)) + (γ ↑ stab(e21))

= β1
0 + β2

0 + β1
1 + β2

1 + β1
2 + β2

2 ,

Φ1(β
1
0) = (β1

0 ↑ stab(e10))− (β1
0 ↑ stab(e00)) = α1

1 + α3
1 + α5

1 − α1
0 − α3

0 − α5
0,

Φ1(β
2
0) = (β2

0 ↑ stab(e10))− (β2
0 ↑ stab(e00)) = α2

1 + α4
1 + α5

1 − α2
0 − α4

0 − α5
0,

Φ1(β
1
1) = (β1

1 ↑ stab(e20))− (β1
1 ↑ stab(e10)) = α1

2 + α2
2 − α1

1 − α4
1 − α5

1,

Φ1(β
2
1) = (β2

1 ↑ stab(e20))− (β2
1 ↑ stab(e10)) = α3

2 + α4
2 − α2

1 − α3
1 − α5

1,

Φ1(β
1
2) = (β1

2 ↑ stab(e00))− (β1
2 ↑ stab(e20)) = α1

0 + α4
0 + α5

0 − α1
2 − α3

2,

Φ1(β
2
2) = (β2

2 ↑ stab(e00))− (β2
2 ↑ stab(e20)) = α2

0 + α3
0 + α5

0 − α2
2 − α4

2.

Here, the SMF of the matrices of Φ2 and Φ1 gives the invariant factors (1)
and (1, 1, 1, 1, 1), respectively. Then, HF

2 (p4m, RC) = 0, HF
1 (p4m, RC) = 0

and HF
0 (p4m, RC) = Z9.

Again a basis of HF
0 (p4m, RC) can be extracted of the last column of the

auxiliary matrixQ. Such a basis is ([α4
0], [α

5
0], [α

3
1], [α

4
1], [α

5
1], [α

1
2], [α

2
2], [α

3
2], [α

4
2]).

3.12. The group p4g

Here our representative for the class of equivariant 2-cells will be the triangle
whose vertices are the middle point of the left side of the (big) square, the center
of that square and the middle point of the lower side of that square. We will
denote these vertices by O, P and Q, respectively. In particular, we identify O
and P with our representatives e00 and e10 for the two classes of 0-cells, while
Q is the image of O under a counterclockwise 4-rotation t whose center is P .
There are also two classes of equivariant 1-cells, whose representatives e01 and e11
we, respectively, identify with OP and QO. For the other side of the triangle,
we have QP = t(OP ). The boundaries are then defined in this way:

∂(e2) = e01 − te01 + e11,

∂(e01) = e10 − e00,

∂(e11) = e00 − te00.

As e10 is a center of 4-rotation, its stabilizer is C4. In turn, the stabilizer of
e00 is generated by a 2-rotation and a reflection, so it is isomorphic to D2. On
the other hand, the unique 1-cell with non-trivial isotropy is e11, which lies in
a reflection axis and then has C2 as stabilizer. Let us write now the Bredon
chain complex:

0 → Zγ → Zβ0 ⊕ Zβ1
1 ⊕ β2

1 →
4⊕

i=1

αi
0

4⊕
i=1

αi
1 → 0.
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Now we can compute the differentials, taking account of lines 1, 6 and 7 in
Table 3 :

Φ2(γ) = (γ ↑ stab(e01))− (γ ↑ stab(e01)) + (γ ↑ stab(e11)) = β1
1 + β2

1 ,

Φ1(β0) = (β0 ↑ stab(e10))− (β0 ↑ stab(e00))

= α1
1 + α2

1 + α3
1 + α4

1 − α1
0 − α2

0 − α3
0 − α4

0,

Φ1(β
1
1) = (β1

1 ↑ stab(e00))− (β1
1 ↑ stab(e00)) = α1

0 + α2
0 − α1

0 − α3
0 = α2

0 − α3
0,

Φ1(β
2
1) = (β2

1 ↑ stab(e00))− (β2
1 ↑ stab(e00)) = α3

0 + α4
0 − α2

0 − α4
0 = α3

0 − α2
0.

Observe that the two induced characters denoted by (β1
1 ↑ stab(e00)) in the

expression of Φ1(β
1
1) are not the same, because they are induced from different

inclusions Z/2 ↪→ D4. Same happens with β2
1 .

After computing the SMF of the matrices of Φ2 and Φ1, we obtain the
invariant factors (1) and (1, 1), respectively. Hence, we have HF

2 (p4g, RC) = 0,
HF

1 (p4g, RC) = 0 and HF
0 (p4g, RC) = Z6.

From the matrix Q obtained in the computation of the SMF of the matrix of
Φ1 we conclude that a basis for HF

0 (p4g, RC) is given by ([α1
0], [α

2
0], [α

4
0], [α

1
1],

[α2
1], [α

4
1]).

3.13. The group p3

For the group p3 a representative e2 for the class of equivariant 2-cells is
the rhombus of the picture. We order the vertices clockwise starting from the
upper left, and denote them as usual by P , Q, R and S. Then representatives
e00, e

1
0 and e20 of the three classes of 0-cells are given by P , Q and R, and a

3-rotation t around O takes P to S. In turn, there are two classes e01 and e11 of
1-cells, which can be, respectively, identified with OP and PQ. Observe that
t(OP ) = t(OS) and t(PQ) = t(SQ). We have the boundaries:

∂(e2) = e01 + e11 − te11 − te01,

∂(e01) = e10 − e00,

∂(e11) = e20 − e10.

The three vertices are 3-rotation centers, and their stabilizers are isomorphic
to C3. On the other hand, the group acts freely in each class of equivariant
1-cells, and hence the Bredon complex has the form:

0 → Zγ → Zβ0 ⊕ Zβ1 →
3⊕

i=1

Zαi
0

3⊕
i=1

Zαi
1

3⊕
i=1

Zαi
2 → 0.

Computing the differentials of the complex, and taking into account line 1
in Table 3 we obtain:

Φ2(γ) = (γ ↑ stab(e01)) + (γ ↑ stab(e11))− (γ ↑ stab(e11))− (γ ↑ stab(e01)) = 0,

Φ1(β0) = (β0 ↑ stab(e10))− (β0 ↑ stab(e00)) = α1
1 + α2

1 − α1
1 − α3

0 = α2
0 − α3

0,
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Φ1(β1) = (β1 ↑ stab(e20))− (β1 ↑ stab(e10)) = α1
2 + α2

2 + α3
2 − α1

1 − α2
1 − α3

1.

As Φ2 is trivial, we have HF
2 (p3, RC) = Z. On the other hand, the SNF of

the matrix of Φ1 produces the invariant factors (1, 1), whence HF
1 (p3, RC) = 0

and HF
0 (p3, RC) = Z7. From the auxiliary matrix of the SNF we obtain a basis

([α2
0], [α

3
0], [α

1
1], [α

2
1], [α

3
1], [α

1
2], [α

2
2]) for H

F
0 (p3, RC).

3.14. The group p3m1

A representative e2 for the equivalence class of equivariant 2-cells for this
action is the equilateral triangle whose vertices are the upper left vertex in the
picture of Figure 2.1 and the two closest rotation centers. We name this three
vertices as O, P and Q, starting from the upper left and counting clockwise.
The representatives e00, e

1
0 and e20 of the three classes of 1-cells are identified

with these three vertices in that order. There are also three classes of 1-cells,
e01, e

1
1 and e21, which we identify, respectively, with OP , PQ and QO. Now we

can describe the boundaries between the cells:

∂(e2) = e01 + e11 + e21,

∂(e01) = e10 − e00,

∂(e11) = e20 − e10,

∂(e21) = e00 − e20.

As in the previous group, the vertices are centers of 3-rotations, and more-
over the sides of the triangle lie on rotation axes. Then, the stabilizers of the
0-cells are isomorphic to D3, and the stabilizers of the 1-cells are isomorphic
to C2. So we have the complex:

0 → Zγ →
2⊕

i=1

βi
0

2⊕
i=1

βi
1

2⊕
i=1

βi
2 →

4⊕
i=1

αi
0

4⊕
i=1

αi
1

4⊕
i=1

αi
2 → 0.

Now we can get the differentials of the chain complex, recall lines 1, 8 and
9 of Table 3:

Φ2(γ) = (γ ↑ stab(e01)) + (γ ↑ stab(e11)) + (γ ↑ stab(e21))

= β1
0 + β2

0 + β1
1 + β2

1 + β1
2 + β2

2 .

Φ1(β
1
0) = (β1

0 ↑ stab(e10))− (β1
0 ↑ stab(e00)) = α1

1 + α3
1 − α1

0 − α3
0,

Φ1(β
2
0) = (β2

0 ↑ stab(e10))− (β2
0 ↑ stab(e00)) = α2

1 + α3
1 − α2

0 − α3
0,

Φ1(β
1
1) = (β1

1 ↑ stab(e20))− (β1
1 ↑ stab(e10)) = α1

2 + α3
2 − α1

1 − α3
1,

Φ1(β
2
1) = (β2

1 ↑ stab(e20))− (β2
1 ↑ stab(e10)) = α2

2 + α3
2 − α2

1 − α3
1,

Φ1(β
1
2) = (β1

2 ↑ stab(e00))− (β1
2 ↑ stab(e20)) = α1

0 + α3
0 − α1

2 − α3
2,

Φ1(β
2
2) = (β2

2 ↑ stab(e00))− (β2
2 ↑ stab(e20)) = α2

0 + α3
0 − α2

2 − α3
2.
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The respective SNF of the matrices of Φ2 and Φ1, respectively, produce
invariant factors (1) and (1, 1, 1, 1). Then the Bredon homology groups are
HF

2 (p3m1, RC) = 0, HF
1 (p3m1, RC) = Z and HF

0 (p3m1, RC) = Z5.
The computation of the auxiliary matrices of the SNF in particular show

that a basis for HF
1 (p3m1, RC) is given by [β1

0 + β1
1 + β1

2 ] and a basis for
HF

0 (p3m1, RC) is ([α
3
0], [α

1
1], [α

2
1], [α

3
1], [α

3
2]).

3.15. The group p31m

In the picture we see a rhombus divided in two equilateral triangles. As the
representative e2 of the class of 2-cells it can be taken the triangle T whose
vertices are the center and the two lower vertices of the left triangle of the
rhombus. We denote by O, P and Q the vertices of T, starting in the one in
the left-hand side and counting clockwise. Now, the two classes of 0-cells for
the action will have representatives e00 and e10 identified with P and Q, and we
take account of the fact that Q = t(O), being t the 3-rotation with center P .
In turn, there are two classes of 1-cells, represented by e01 and e11, which we
identify with OP and QO. Observe that t(OP ) = QP . Now we can describe
the boundaries here:

∂(e2) = e01 + te01 + e11,

∂(e01) = e10 − e00,

∂(e11) = e00 − te00.

The stabilizer of e00 is generated by a 3-rotation and reflection, and hence
is isomorphic to D3. In turn, the stabilizer of e20 is generated by a 3-rotation
and is then isomorphic to C3. On the other hand, the group acts freely over
the class of e01, while the stabilizer of e11 is C2, as this representative lies in a
reflection axis. Then the Bredon chain complex is:

0 → Zγ → Zβ0 ⊕ Zβ1
1 ⊕ Zβ2

1 →
3⊕

i=1

Zαi
0

3⊕
i=1

Zαi
1 → 0.

Now let us compute the differentials of the complex, taking account of lines
1, 3, 8 and 9 of Table 3:

Φ2(γ) = (γ ↑ stab(e01))− (γ ↑ stab(e01)) + (γ ↑ stab(e11)) = β1
1 + β2

1 ,

Φ1(β0) = (β0 ↑ stab(e10))− (β0 ↑ stab(e00)) = α1
1 + α2

1 + α3
1 − α1

0 − α2
0 − α3

0,

Φ1(β
1
1) = (β1

1 ↑ stab(e00))− (β1
1 ↑ stab(e00)) = 0,

Φ1(β
2
1) = (β2

1 ↑ stab(e00))− (β2
1 ↑ stab(e00)) = 0.

Observe that, unlike what happens in the case of p4g, here the differences
(βi

1 ↑ stab(e00)) − (βi
1 ↑ stab(e00) are trivial because in D3 there is only one

conjugation class of elements of order 2.
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Now the computation of the SNF for the two differentials produce the invari-
ant factors (1) and (1) for Φ2 and Φ1, respectively. Then, H

F
2 (p31m, RC) = 0,

HF
1 (p31m, RC) = Z and HF

0 (p31m, RC) = Z5.
The auxiliary matrices of the SNF produce the bases [β1

1 ] forH
F
1 (p31m, RC)

and ([α2
0], [α

3
0], [α

1
1], [α

2
1], [α

3
1]) for H

F
0 (p31m, RC).

3.16. The group p6

The representative e2 the class of equivariant 2-cells by the action of p6 will
be exactly the same triangle as in the previous group. We keep the names of
the vertices O, P and Q, and we consider another vertex R, the middle point
of the lower side of the triangle. There will be three of classes of equivalence
of 0-cells, whose representatives e00, e

1
0 and e20 are identified with O, P and R.

The vertex Q is now the image of O under the 2-rotation r1 centered in R
(and also under the 3-rotation r2 centered in P ). There are also two classes
of 1-cells, whose representatives e01 and e11 are identified, respectively, with the
segments OP and QR. Observe that r2(OP ) = QP and r1(QR) = OR. We
can now write the boundaries for the cells:

∂(e2) = e01 + r2e
0
1 + e11 + r1e

1
1,

∂(e01) = e10 − e00,

∂(e11) = e20 − te00.

Observe that e00, e
1
0 and e20 are, respectively, 6-, 3- and 2- rotation centers,

and their stabilizers are, respectively, isomorphic to C6, C3 and C2. On the
other hand, the group p6 act freely over each of the classes of 1-cells, so we
have the following Bredon chain complex:

0 → Zγ → Zβ0 ⊕ Zβ1 →
6⊕

i=1

αi
0

3⊕
i=1

αi
1

2⊕
i=1

αi
2 → 0.

Now we compute the differentials, taking into account line 1 of Table 3:

Φ2(γ) = (γ ↑ stab(e01))− (γ ↑ stab(e01)) + (γ ↑ stab(e11))− (γ ↑ stab(e11)) = 0,

Φ1(β0) = (β0 ↑ stab(e10))− (β0 ↑ stab(e00))

= α1
1 + α2

1 + α3
1 − α1

0 − α2
0 − α3

0 − α4
0 − α5

0 − α6
0,

Φ1(β1) = (β1 ↑ stab(e20))− (β1 ↑ stab(e00))

= α1
2 + α2

2 − α1
0 − α2

0 − α3
0 − α4

0 − α5
0 − α6

0.

As the first homomorphism is trivial, we get HF
2 (p6, RC) = Z. On the other

hand, the SNF of the matrix of Φ1 has (1, 1) as invariant factors, and thus
HF

1 (p6, RC) = 0 and HF
0 (p6, RC) = Z9.

Clearly a basis for HF
2 (p6, RC) is given by [γ], while the auxiliary computa-

tions of the SNF provide the basis of HF
1 (p6, RC) given by ([α2

0], [α
3
0], [α

4
0], [α

5
0],

[α6
0], [α

2
1], [α

3
1], [α

1
2], [α

2
2]).
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3.17. The group p6m

To get our representative e2 for the class of equivariant 2-cells in this group,
we take in the previous group p6 the triangle defined by the vertices O, P and
R there. We keep the name of the vertices here, and identify them in this order
with the representatives e00, e

1
0 and e20 of the three equivalence classes of 0-cells.

We also identify the representatives e01, e
1
1 and e21 of the three classes of 1-cells

with the segments OP , PR and RO. Now the boundaries are:

∂(e2) = e01 + e11 + e21,

∂(e01) = e10 − e00,

∂(e11) = e20 − e10,

∂(e21) = e00 − e20.

Again e00, e
1
0 and e20 are, respectively, 6-, 3- and 2-rotation centers. In addi-

tion, all of them lie in a reflection axis. Hence, the stabilizers of these vertices
are, respectively, D6, D3 and D2. As the representatives of the 1-cells all lie in
some reflection axis, their stabilizers are all isomorphic to C2. So we have the
following Bredon chain complex:

0 → Zγ →
2⊕

i=1

βi
0

2⊕
i=1

βi
1

2⊕
i=1

βi
2 →

6⊕
i=1

αi
0

3⊕
i=1

αi
1

4⊕
i=1

αi
2 → 0.

We compute the differentials for this complex, taking into account lines 8,
9, 14, 15, 16 and 17 of Table 3:

Φ2(γ) = (γ ↑ stab(e01)) + (γ ↑ stab(e11)) + (γ ↑ stab(e21)

= β1
0 + β2

0 + β1
1 + β2

1 + β1
2 + β2

2 ,

Φ1(β
1
0) = (β1

0 ↑ stab(e10))− (β1
0 ↑ stab(e00)) = α1

1 + α3
1 − α1

0 − α3
0 − α5

0 − α6
0,

Φ1(β
2
0) = (β2

0 ↑ stab(e10))− (β2
0 ↑ stab(e00)) = α2

1 + α3
1 − α2

0 − α4
0 − α5

0 − α6
0,

Φ1(β
1
1) = (β1

1 ↑ stab(e20))− (β1
1 ↑ stab(e10)) = α1

2 + α2
2 − α1

1 − α3
1,

Φ1(β
2
1) = (β2

1 ↑ stab(e20))− (β2
1 ↑ stab(e10)) = α3

2 + α4
2 − α2

1 − α3
1,

Φ1(β
1
2) = (β1

2 ↑ stab(e00))− (β1
2 ↑ stab(e20)) = α1

0 + α4
0 + α5

0 + α6
0 − α1

2 − α3
2,

Φ1(β
2
2) = (β2

2 ↑ stab(e00))− (β2
2 ↑ stab(e20)) = α2

0 + α3
0 + α5

0 + α6
0 − α2

2 − α4
2.

The calculation of the SNF for Φ2 and Φ1 produce the invariant factors (1)
and (1, 1, 1, 1, 1), respectively. Then we have HF

2 (p6m, RC) = 0, HF
1 (p6m,

RC) = 0 and HF
0 (p6m, RC) = Z8.

The auxiliary matrix Q of the SNF permits to identify a basis of HF
0 (p6m,

RC)[β
1
1 ], which is given by ([α4

0], [α
5
0], [α

6
0], [α

1
1], [α

3
1], [α

1
2], [α

3
2], [α

4
2]).

Remark 3.1. Observe that applying [18, Theorem 5.27] to the Bredon homology
groups of the wallpaper groups and recalling that the Baum-Connes conjecture
holds for these groups, we recover the K-theory computations of [14, Section
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5]. Hence, our results can also be interpreted as a way to approach directly the
left-hand side of the conjecture in the case of wallpaper groups.

Table 4. Bredon homology

Group H2 H1 Basis H1 H0 Basis H0

p1 Z Z2 ([β1], [β2]) Z [α]
p2 Z 0 - Z5 ([α1

0], [α
2
0], [α

2
1], [α

2
2], [α

2
3])

pm 0 Z3 ([β1
1 ], [β

2
1 ], [β

1
2 ]) Z3 ([α2

0], [α
1
1], [α

2
1])

pg 0 Z/2⊕ Z ([β0], [β1]) Z [α]
cm 0 Z2 ([β1

1 ], [β
2
1 ]) Z2 ([α1], [α2])

pmm 0 0 - Z9 ([α3
0], [α

3
1], [α

4
1], [α

3
2], [α

4
2], [α

1
3], [α

2
3], [α

3
3], [α

4
3])

pmg 0 Z [β1
1 + β1

2 ] Z4 ([α2
1], [α

1
2], [α

2
2], [α

2
3])

pgg 0 Z/2 [β0] Z3 ([α2
1], [α

1
2], [α

2
2])

cmm 0 0 - Z6 ([α1
0 + α2

0], [α
3
0], [α

4
0], [α

1
1], [α

3
1], [α

2
2])

p4 Z 0 - Z8 ([α2
0], [α

2
1], [α

3
1], [α

4
1], [α

1
2], [α

2
2], [α

3
2], [α

4
2])

p4m 0 0 - Z9 ([α4
0], [α

5
0], [α

3
1], [α

4
1], [α

5
1], [α

1
2], [α

2
2], [α

3
2], [α

4
2])

p4g 0 0 - Z6 ([α1
0], [α

2
0], [α

4
0], [α

1
1], [α

2
1], [α

4
1])

p3 Z 0 - Z7 ([α2
0], [α

3
0], [α

1
1], [α

2
1], [α

3
1], [α

1
2], [α

2
2])

p3m1 0 Z [β1
0 + β1

1 + β1
2 ] Z5 ([α3

0], [α
1
1], [α

2
1], [α

3
1], [α

3
2])

p31m 0 Z [β1
1 ] Z5 ([α2

0], [α
3
0], [α

1
1], [α

2
1], [α

3
1])

p6 Z 0 - Z9 ([α2
0], [α

3
0], [α

4
0], [α

5
0], [α

6
0], [α

2
1], [α

3
1], [α

1
2], [α

2
2])

p6m 0 0 - Z8 ([α4
0], [α

5
0], [α

6
0], [α

1
1], [α

3
1], [α

1
2], [α

3
2], [α

4
2])
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Basel, 2005. https://doi.org/10.1007/3-7643-7447-0_7

[13] W. Lück and H. Reich, The Baum-Connes and the Farrell-Jones conjectures in K-

and L-theory, in Handbook of K-theory. Vol. 1, 2, 703–842, Springer, Berlin, 2005.
https://doi.org/10.1007/978-3-540-27855-9_15

[14] W. Lück and W. R. Stamm, Computations of K- and L-theory of cocompact

planar groups, K-Theory 21 (2000), no. 3, 249–292. https://doi.org/10.1023/A:

1026539221644

[15] G. Mackiw, Applications of Abstract Algebra, John Wiley & Sons, Inc., New York, 1985.

[16] K. Matthews, http://www.numbertheory.org/php/smith.html
[17] J. P. May, Equivariant homotopy and cohomology theory, CBMS Regional Conference

Series in Mathematics, 91, Published for the Conference Board of the Mathematical
Sciences, Washington, DC, 1996. https://doi.org/10.1090/cbms/091

[18] G. Mislin and A. Valette, Proper group actions and the Baum-Connes conjecture,

Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2003.
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