DOI QR코드

DOI QR Code

Case study on frequency bands contributing the single number quantity for heavy-weight impact sound based on assessment method changes

중량충격음 평가방법 변화에 따른 단일수치평가량 기여 주파수 대역 사례 분석

  • 신혜경 (한국건설기술연구원 건축연구본부) ;
  • 박상희 (한국건설기술연구원 건축연구본부) ;
  • 김경우 (한국건설기술연구원 건축연구본부)
  • Received : 2023.09.25
  • Accepted : 2023.11.15
  • Published : 2023.11.30

Abstract

With the introduction of the post-verification system, the measurement of floor impact noise performance on-site has become mandatory, and the evaluation method has changed. To track the performance changes since the policy implementation, research is needed on how the characteristics of heavyweight impact sound change according to the varied evaluation method. In this study, we analyzed the contribution rate of the frequency band-specific sound pressure level on the single-number quantity for a multi-family housing unit with the same floor plan and floor structure, comprising 59 households, based on the changed impact sources and evaluation indicators. It is difficult to compare simply because the method of calculating contributions by frequency band according to the single-day evaluation is different, but the average contribution rate of 63 Hz was 80.8 % in the evaluation method before the introduction of the post-confirmation system (Tire measurement and evaluated as L'i,Fmax,AW), and the average contribution rate of 125 Hz was 19.2 %. The current evaluation method (rubber ball measurement and evaluation as L'iA,Fmax) shows that the contribution rate has decreased to 33.1 % on average at 50 Hz ~ 80 Hz, 58.7 % on average at 100 Hz ~ 160 Hz, 6.9 % on average at 200 Hz ~ 315 Hz, and 1.3 % on average at 400 Hz ~ 630 Hz. This result is a case analysis for the target apartment house, and it is necessary to analyze measurement data for more diverse apartment houses.

사후확인제 도입으로 현장에서의 바닥충격음 성능 측정이 의무화되고, 평가 방법이 변경되었다. 제도 변화에 따른 바닥충격음 성능 변화를 추적하기 위해서는 변경된 평가방법에 따라 중량충격음 특성이 어떻게 나타나는지에 대한 연구가 필요하다. 본 연구에서는 평면과 바닥구조가 동일한 하나의 아파트 건물에 위치한 59세대를 대상으로 충격원 및 평가지표에 따라 단일수치평가량을 결정하는 주파수 대역의 기여율을 분석하였다. 단일수치평가량에 따른 주파수대역별 기여도 산출방법이 상이하여 단순 비교는 어려우나, 사후확인제 도입 이전 평가방법(뱅머신 측정 및 L'i,Fmax,AW으로 평가)에서는 63 Hz가 미치는 기여율은 평균 80.8 %로 나타났으며, 125 Hz가 미치는 기여율은 평균 19.2 %으로 나타났다. 현행 평가방법(고무공 측정 및 L'iA,Fmax으로 평가) 에서는 기여율은 50 Hz ~ 80 Hz에서 평균 33.1 %, 100 Hz ~ 160 Hz에서 평균 58.7 %, 200 Hz ~ 315 Hz에서 평균 6.9 %, 400 Hz ~ 630 Hz에서 평균 1.3 %으로, 63 Hz 대역의 기여도가 낮아진 것으로 나타났다. 이 결과는 대상 공동주택에 대한 사례 분석 내용으로, 더 다양한 공동주택에 대한 측정 데이터를 분석할 필요가 있다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호RS-2022-00144050).

References

  1. MOLEG, Housing Act, Law No. 19117., 2023. 
  2. KS F 2863-1, Ratio of Floor Impact Sound Insulation for Impact Source in Buildings and of Building Elements Part 1: Floor Impact Sound Insulation Against Standard Light Impact Sources, 2022. 
  3. KS F 2863-2, Ratio of Floor Impact Sound Insulation for Impact Source in Buildings and of Building Elements Part 2: Floor Impact Sound Insulation Against Standard Heavy Impact Sources, 2022. 
  4. KS F ISO 717-2, Acoustics-Rating of Sound Insulation in Buildings and of Building Elements-Part 2: Impact Sound Insulation, 2022. 
  5. M. Maibach, C. Schreyer, D. Sutter, H. P. Van Essen, B. H. Boon, R. Smokers, A. Schroten, C. Doll, B. Pawlowska, and M. Bak, Handbook on Estimation of External Costs in The Transport Sector (Ce Delft, Delft, 2008), pp. 336. 
  6. K.-W. Kim and H.-K. Shin, "Correspondence between standard heavy impact sources and single number indexes of floor impact sound" (in Korean), Trans. Korean Soc. Noise Vib. Eng. 29, 801-809 (2019).  https://doi.org/10.5050/KSNVE.2019.29.6.801
  7. T. Okano, "Correspondence between two types of rating indices for the heavy weight floor impact sound insulation of residential buildings," Appl. Acoust. 106, 10-15 (2016).  https://doi.org/10.1016/j.apacoust.2015.12.010
  8. T. Ishimaru, M. Owaki, F. Takakura, T. Zaima, S. Kume, and Y. Yamashita, "Influence on vibration propagation characteristic of the dry double floorings by the difference of the impulsive force-a study on heavy weight floor impact sound insulation performance of the dry double flooring in multiple dwelling houses," AIJ J. Technology and Design, 13, 585-589 (2007).  https://doi.org/10.3130/aijt.13.585
  9. J. Y. Jeon, J. K. Ryu, J. H. Jeong, and H. Tachibana, "Review of the impact ball in evaluating floor impact sound," Acta Acust. United Acust. 92, 777-786 (2006). 
  10. H. K. Shin, S. H. Park, and K. W. Kim, "Spatial distribution of heavy-weight floor impact sounds according to the household location in a box-frame concrete building," Appl. Acoust. 203, 109214 (2023). 
  11. MOLIT, Infrastructure and Transport Recognition and Inspection Standards for Floor Impact Noise Reduction Structures in Multi-Family Housing, Notice No. 2023-494, 2023. 
  12. S. T. Kim, H. M. Cho, and M. J. Kim, "Effects of wall-to-wall supported ceilings on impact sound insulation for use in residential buildings," Buildings, 11, 587 (2021). 
  13. J. Ryu, H. Song, and Y. Kim, "Effect of the suspended ceiling with low-frequency resonant panel absorber on heavyweight floor impact sound in the building," Build. Environ. 139, 1-7 (2018).  https://doi.org/10.1016/j.buildenv.2018.05.004
  14. H. K. Shin and K. W. Kim, "Sound absorbing ceiling to reduce heavy weight floor impact sound," Build. Environ. 180, 107058 (2020). 
  15. S. Schoenwald, B. Zeitler, and T. R. Nightingale, "Influence of receive room properties on impact sound pressure level measured with heavy impact sources," Proc. ICSV, 1-8 (2010). 
  16. W.-J. Kim, H.-M. Cho, and M.-J. Kim, "Subjective response on the octave band level change of rubber ball sound with the same single-number quantity" (in Korean), Trans. Korean Soc. Noise Vib. Eng. 30, 506-517 (2020). https://doi.org/10.5050/KSNVE.2020.30.5.506