DOI QR코드

DOI QR Code

Optimization of impeller blade shape for high-performance and low-noise centrifugal pump

고성능 저소음 원심펌프 개발을 위한 임펠러 익형 최적설계

  • Received : 2023.08.18
  • Accepted : 2023.09.25
  • Published : 2023.11.30

Abstract

The aim of this study was to enhance the flow rate and noise performance of a centrifugal pump in dishwashers by designing an optimized impeller shape through numerical and experimental investigations. To evaluate the performance of the target centrifugal pump, experiment was conducted using a pump performance tester and noise experiment was carried out in a semi-anechoic chamber with microphones and a reflecting wall behind the dishwasher. Through the use of advanced computational fluid dynamics techniques, numerical simulations were performed to analyze the flow and aeroacoustics performance of our target centrifugal pump impeller. To achieve this, numerical simulations were carried out using the Reynolds-Average Navier-Stokes equations and Ffowcs-Willliams and Hawkings equations as governing equations. In order to ensure the validity of numerical methods, a thorough comparison of numerical results with experimental results. After having confirmed the reliability of the current numerical method of this study, the optimization of the target centrifugal pump impeller was conducted. An improvement in flow rate was confirmed numerically, and a manufactured proto-type of the optimized model was used for experimental investigation. Furthermore, it was observed that by applying the fan law, we could effectively reduce noise levels without reducing the flow rate.

본 논문에서는 식기 세척기 내 원심펌프를 대상으로 수치적/실험적 연구를 통해 최적 설계를 수행하였으며 유량 및 소음 성능을 개선하고자 하였다. 먼저 대상 원심펌프의 특성을 실험적으로 분석하기 위해 펌프 성능시험기를 통한 유량 실험과 반 무향실에서의 소음 실험을 진행하였다. 원심펌프 회전에 따른 내부 유동 및 유동 소음 성능을 수치적으로 모사하기 위해 전산유체역학 기반의 Reynolds Averaged Navier-Stokes(RANS) 방정식과 Ffowcs Williams and Hawkings 방정식을 지배 방정식으로 수치해석을 수행하였다. 실험 결과와의 비교를 통해 수치 기법의 유효성을 검증하였으며, 검증된 수치 기법을 활용하여 원심펌프 내 임펠러 형상에 대한 최적 설계를 수행하였다. 수치 기법의 활용을 통해 최적 설계된 임펠러의 개선된 유량 성능을 수치적으로 확인하였으며, 유동장 분석을 통해 임펠러 형상 각도 변화에 따른 유동 특성 변화 및 개선을 확인하였다. 또한, 시제품 제작 및 실험을 통해 개선 유량 성능을 검증하였으며, 팬 법칙에 의거하여 동일 유량에서 소음 수준이 감소함을 확인하였다.

Keywords

Acknowledgement

본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연협력 선도대학 육성사업(LINC 3.0)의 연구결과입니다.

References

  1. D. Shin, S. Y. Ryu, C. Cheong, T. H. Kim, and J. Jung, "Development of high-performance/low-noise centrifugal fan circulating cold air inside a household refrigerator by reduction of vortex flow" (in Korean), Trans. Korean Soc. Noise Vib. Eng. 26, 428-435 (2016). https://doi.org/10.5050/KSNVE.2016.26.4.428
  2. D. Shin, C. Cheong, H. Heo, T. Kim, and J. Jung, "Performance-noise optimization of centrifugal fan using response surface method" (in Korean), Trans. Korean Soc. Mech. Eng. A, 41, 165-172 (2017).
  3. J. Kim, S. Y. Ryu, C. Cheong, D. Jang, and M. An, "Development of high performance and low noise compact centrifugal fan for cooling automotive seats" (in Korean), J. Acoust. Soc. Kr. 37, 396-403 (2018).
  4. K. Kim, S. Y. Ryu, C. Cheong, S. Seo, and C. Jang, "Optimal design of impeller in fan motor unit of cordless vacuum cleaner for improving flow performance and reducing aerodynamic noise" (in Korean), J. Acoust. Soc. Kr. 39, 379-389 (2020).
  5. M. Jung, J. Choi, S. Y. Ryu, C. Cheong, T. H. Kim, and J. Koo, "Improvement in flow and noise performance of backward centrifugal fan by redesigning airfoil geometry" (in Korean), J. Acoust. Soc. Kr. 40, 555-565 (2021).
  6. KS B 6301:2015, Testing Methods for Centrifugal Pumps, Mixed Flow Pumps and Axial Flow Pumps, 2020.
  7. ISO 3744:2010, Acoustics - Determination of Sound Power Level and Energy Levels of Noise Sources Using Sound Pressure - Engineering Methods for an Essentially Free Field Over a Reflecting Plane, 2010.
  8. ISO 3745:2012, Acoustics - Determination of Sound Power Levels and Sound Energy Levels of Noise Sources Using Sound Pressure - Precision Method for Anechoic Rooms and Hemi-Anechoic Rooms, 2012.
  9. F. Menter, "Zonal two equation kw turbulence models for aerodynamic flows," Proc. AIAA Fluid Dynamics Conf. 1-21 (1993).
  10. F. R. Menter, "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA, 32, 1598-1605 (1994). https://doi.org/10.2514/3.12149