DOI QR코드

DOI QR Code

Chemical Vapor Deposition 공정으로 제작한 CuI p-type 박막 트랜지스터

p-type CuI Thin-Film Transistors through Chemical Vapor Deposition Process

  • 이승민 (충남대학교 신소재공학과) ;
  • 장성철 (동국대학교 융합에너지 신소재공학과) ;
  • 박지민 (동국대학교 융합에너지 신소재공학과) ;
  • 윤순길 (충남대학교 신소재공학과) ;
  • 김현석 (충남대학교 신소재공학과)
  • Seungmin Lee (Department of Materials Science and Engineering, Chungnam National University) ;
  • Seong Cheol Jang (Department of Energy and Materials Engineering, Dongguk University) ;
  • Ji-Min Park (Department of Energy and Materials Engineering, Dongguk University) ;
  • Soon-Gil Yoon (Department of Materials Science and Engineering, Chungnam National University) ;
  • Hyun-Suk Kim (Department of Materials Science and Engineering, Chungnam National University)
  • 투고 : 2023.10.09
  • 심사 : 2023.11.16
  • 발행 : 2023.11.27

초록

As the demand for p-type semiconductors increases, much effort is being put into developing new p-type materials. This demand has led to the development of novel new p-type semiconductors that go beyond existing p-type semiconductors. Copper iodide (CuI) has recently received much attention due to its wide band gap, excellent optical and electrical properties, and low temperature synthesis. However, there are limits to its use as a semiconductor material for thin film transistor devices due to the uncontrolled generation of copper vacancies and excessive hole doping. In this work, p-type CuI semiconductors were fabricated using the chemical vapor deposition (CVD) process for thin-film transistor (TFT) applications. The vacuum process has advantages over conventional solution processes, including conformal coating, large area uniformity, easy thickness control and so on. CuI thin films were fabricated at various deposition temperatures from 150 to 250 ℃ The surface roughness root mean square (RMS) value, which is related to carrier transport, decreases with increasing deposition temperature. Hall effect measurements showed that all fabricated CuI films had p-type behavior and that the Hall mobility decreased with increasing deposition temperature. The CuI TFTs showed no clear on/off because of the high concentration of carriers. By adopting a Zn capping layer, carrier concentrations decreased, leading to clear on and off behavior. Finally, stability tests of the PBS and NBS showed a threshold voltage shift within ±1 V.

키워드

과제정보

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant numbers: 2022R1A2C2008273, 2021R1A6A1A03043682, 2021M3F3A2A03017873). This work was also supported by the Dongguk University Research Fund of 2023.

참고문헌

  1. A. Liu, H. Zhu, M. G. Kim, J. H. Kim and Y. Y. Noh, Adv. Sci., 8, 2100546 (2021).
  2. A. A. Hala, A. Caraveo-Frescas, M. N. Hedhili and H. N. Alshareef, ACS Appl. Mater. Interfaces, 5, 9615 (2013).
  3. J. Y. Choi, S. Kim, D. H. Kim and S. Y. Lee, Thin Solid Films, 594, 293 (2015). https://doi.org/10.1016/j.tsf.2015.04.048
  4. M. Grundmann, F. L. Schein, M. Lorenz, T. Bontgen, J. Lenzner and H. von Wenckstern Phys. Status Solidi A, 210, 1671 (2013).
  5. G. A. Sepalage, S. Meyer, A. Pascoe, A. D. Scully, F. Huang, U. Bach, Y. B. Cheng and L. Spiccia, Adv. Funct. Mater., 25, 5650 (2015).
  6. M. G. Shin, K. H. Bae, H. S. Jeong, D. H. Kim, H. S. Cha and H. I. Kwon, Micromachines, 11, 917 (2020).
  7. A. Liu, H. Zhu, W. T. Park, S. J. Kim, H. Kim, M. G. Kim and Y. Y. Noh, Nat. Commun., 11, 4309 (2020).
  8. A. Annadi, N. Zhang, D. B. K. Lim and H. Gong, ACS Appl. Electron. Mater., 1, 1029 (2019).
  9. Z. W. Shang, H. H. Hsu, Z. W. Zheng and Cheng, C. H., Nanotechnol. Rev., 8, 422 (2019). https://doi.org/10.1515/ntrev-2019-0038
  10. N. N. Mude, R. N. Bukke and J. Jang, Adv. Mater. Technol., 7, 2101434 (2022).
  11. X. Yuan, W. Dou, Y. Wang, J. Zeng, L. Wang, L. Lei and D. Tang, IEEE Trans. Electron Devices, 69, 6480 (2022).
  12. Z. Wang, H. A. Al-Jawhari, P. K. Nayak, J. A. Caraveo-Frescas, N. Wei, M. N. Hedhili and H. N. Alshareef, Sci. Rep., 5, 9617 (2015).
  13. C. Yang, M. Kneiβ, M. Lorenz and M. Grundmann, Proc. Natl. Acad. Sci. U. S. A., 113, 46 (2016).
  14. P. Storm, M. S. Bar, G. Benndorf, S. Selle, C. Yang, H. Von Wenckstern and M. Lorenz, APL Mater., 8, 091115 (2020).
  15. A. Liu, H. Zhu, W. T. Park, S. J. Kang, Y. Xu, M. G. Kim and Y. Y. Noh, Adv. Mater., 30, 1802379 (2018).
  16. C. H. Choi, J. Y. Gorecki, Z. Fang, M. Allen, S. Li, L. Y. Lin and C. H. Chang, J. Mater. Chem. C, 4, 10309 (2016).
  17. E. J. Bae, J. Kim, M. Han and Y. H. Kang, ACS Mater. Lett., 5, 8 (2023).
  18. H. Wu, L. Liang, X. Wang, X. Shi, H. Zhang, Y. Pei and H. Cao, Appl. Surf. Sci., 612, 155795 (2023).
  19. T. Kim and J. K. Jeong, Phys. Status Solidi RRL, 16, 2100394 (2022).
  20. H. J. Lee, S. Lee, Y. Ji, K. G. Cho, K. S. Choi, C. Jeon, K. H. Lee and K. Hong, ACS Appl. Mater. Interfaces, 11, 40243 (2019).
  21. S. Lee, H. J. Lee, Y. Ji, S. M. Choi, K. H. Lee and K. Hong, J. Mater. Chem. C, 8, 9608 (2020).
  22. A. Liu, H. Zhu, W. Park, S. Kang, Y. Xu, M. Kim and Y. Noh, Adv. Mater., 30, 1802379 (2018).