DOI QR코드

DOI QR Code

Elution profiles of metronidazole from calcium sulfate beads

  • Received : 2023.06.22
  • Accepted : 2023.08.13
  • Published : 2023.11.30

Abstract

Background: Antibiotic beads are used to treat local bacterial infections by delivering high drug concentrations to infected tissue. Objectives: This study examined the elution characteristics of metronidazole from metronidazole-calcium sulfate (MCa) and metronidazole-calcium-potassium sulfate (MCaK) beads over 20 days and the antibacterial efficacy of the beads after storage. Methods: The MCa and MCaK beads were prepared by mixing 250 mg of metronidazole and 10 g of calcium sulfate hemihydrate with water and a 3% potassium sulfate solution, respectively. The beads were placed in phosphate-buffered saline for the elution study. The metronidazole eluents were determined using high-performance liquid chromatography. The microstructures were examined by scanning electron microscopy (SEM), and the antimicrobial activity was evaluated by a microbioassay. Results: For the 20-day study, the total amount of metronidazole released was greater in the MCa beads than in the MCaK beads by 6.61 ± 0.48 mg (89.11% ± 3.04%) and 4.65 ± 0.36 mg (73.11% ± 4.38%), respectively. The amounts of eluted drugs from the MCa and MCaK beads were higher than the minimum inhibitory concentration at 0.5 ㎍/mL against anaerobic bacteria at both 20 days and 14 days. SEM showed that calcium crystals on the outer surface had dissolved after elution, and thinner calcium crystals were prominent in the MCaK beads. The MCa and MCaK beads exhibited antibacterial activity after setting, followed by storage at room temperature or 4℃ for 21 days. Conclusions: The MCa beads could release more drug than the MCaK beads, but all eluted metronidazole amounts were effective in controlling bacterial infections. Both metronidazole beads could be stored at ambient temperature or in a refrigerator.

Keywords

Acknowledgement

This research was supported by grants from the Kasetsart Veterinary Development Funds, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand.

References

  1. Levack AE, Turajane K, Driscoll DA, Yang X, Miller AO, Bostrom MP, et al. Identifying alternative antibiotics that elute from calcium sulfate beads for treatment of orthopedic infections. J Orthop Res. 2022;40(5):1143-1153. https://doi.org/10.1002/jor.25135
  2. Lacqua A, Helmer P. Treatment of septic tenosynovitis and osteoarthritis in an American White Pekin (Anas platyrhynchos domesticus) with repeated intravenous regional limb perfusion and antibiotic-impregnated calcium sulfate beads. J Avian Med Surg. 2023;36(4):414-420. https://doi.org/10.1647/21-00056
  3. Peterson LC, Kim SE, Lewis DD, Johnson MD, Ferrigno CRA. Calcium sulfate antibiotic-impregnated bead implantation for deep surgical site infection associated with orthopedic surgery in small animals. Vet Surg. 2021;50(4):748-757. https://doi.org/10.1111/vsu.13570
  4. Wininger DA, Fass RJ. Antibiotic-impregnated cement and beads for orthopedic infections. Antimicrob Agents Chemother. 1996;40(12):2675-2679. https://doi.org/10.1128/AAC.40.12.2675
  5. Ricci JL, Weiner MJ, Mamidwar S, Alexander H. 14. Calcium sulfate. In: Kokubo T, editor. Bioceramics and Their Clinical Applications. Cambridge, England: Woodhead Publishing; 2008, 302-325.
  6. Thomas MV, Puleo DA. Calcium sulfate: properties and clinical applications. J Biomed Mater Res B Appl Biomater. 2009;88(2):597-610. https://doi.org/10.1002/jbm.b.31269
  7. Beuerlein MJ, McKee MD. Calcium sulfates: what is the evidence? J Orthop Trauma. 2010;24 Suppl 1:S46-S51. https://doi.org/10.1097/BOT.0b013e3181cec48e
  8. Merkatoris P, Schleining J, Krull A, Borts D, Fajt V. In vitro elution of penicillin, ampicillin, tetracycline, tulathromycin, and florfenicol from plaster of Paris beads. Front Vet Sci. 2020;7:585423.
  9. Atilla A, Boothe HW, Tollett M, Duran S, Diaz DC, Sofge J, et al. In vitro elution of amikacin and vancomycin from impregnated plaster of Paris beads. Vet Surg. 2010;39(6):715-721. https://doi.org/10.1111/j.1532-950X.2009.00632.x
  10. Parker AC, Smith JK, Courtney HS, Haggard WO. Evaluation of two sources of calcium sulfate for a local drug delivery system: a pilot study. Clin Orthop Relat Res. 2011;469(11):3008-3015. https://doi.org/10.1007/s11999-011-1911-1
  11. Webb ND, McCanless JD, Courtney HS, Bumgardner JD, Haggard WO. Daptomycin eluted from calcium sulfate appears effective against Staphylococcus. Clin Orthop Relat Res. 2008;466(6):1383-1387. https://doi.org/10.1007/s11999-008-0245-0
  12. Thitiyanaporn C, Thengchaisri N, Udomkusonsri P. Effect of porosity of calcium sulfate beads on ceftazidime elution and in vitro osteogenic properties. Agr Nat Resour. 2012;46(5):703-714.
  13. Minarikova A, Hauptman K, Knotek Z, Jekl V. Microbial flora of odontogenic abscesses in pet guinea pigs. Vet Rec. 2016;179(13):331.
  14. Muir P, Johnson KA. Anaerobic bacteria isolated from osteomyelitis in dogs and cats. Vet Surg. 1992;21(6):463-466. https://doi.org/10.1111/j.1532-950X.1992.tb00082.x
  15. Siqueira EG, Rahal SC, Ribeiro MG, Paes AC, Listoni FP, Vassalo FG. Exogenous bacterial osteomyelitis in 52 dogs: a retrospective study of etiology and in vitro antimicrobial susceptibility profile (2000-2013). Vet Q. 2014;34(4):201-204. https://doi.org/10.1080/01652176.2014.974000
  16. Brookins MD, Rajeev S, Thornhill TD, Kreinheder K, Miller DL. Mandibular and maxillary osteomyelitis and myositis in a captive herd of red kangaroos (Macropus rufus). J Vet Diagn Invest. 2008;20(6):846-849. https://doi.org/10.1177/104063870802000627
  17. Schnepf A, Kramer S, Wagels R, Volk HA, Kreienbrock L. Evaluation of antimicrobial usage in dogs and cats at a Veterinary Teaching Hospital in Germany in 2017 and 2018. Front Vet Sci. 2021;8:689018.
  18. Ramos JR, Howard RD, Pleasant RS, Moll HD, Blodgett DJ, Magnin G, et al. Elution of metronidazole and gentamicin from polymethylmethacrylate beads. Vet Surg. 2003;32(3):251-261. https://doi.org/10.1053/jvet.2003.50024
  19. Udomkusonsri P, Kaewmokul S, Arthitvong S, Phaochoosak N. Elution profiles of cefazolin from PMMA and calcium sulfate beads prepared from commercial cefazolin formulations. J Vet Med Sci. 2012;74(3):301-305. https://doi.org/10.1292/jvms.11-0095
  20. Ofokansi K, Uzor P. Stability studies and degradation kinetics of some commercially available metronidazole suspensions in Nigeria. J Pharm Allied Sci. 2011;8(3):1379-1386.
  21. Stephan B, Greife HA, Pridmore A, Silley P. Activity of pradofloxacin against Porphyromonas and Prevotella spp. implicated in periodontal disease in dogs: susceptibility test data from a European multicenter study. Antimicrob Agents Chemother. 2008;52(6):2149-2155. https://doi.org/10.1128/AAC.00019-08
  22. Tyrrell KL, Citron DM, Jenkins JR, Goldstein EJ. Periodontal bacteria in rabbit mandibular and maxillary abscesses. J Clin Microbiol. 2002;40(3):1044-1047. https://doi.org/10.1128/JCM.40.3.1044-1047.2002
  23. Knecht CS, Moley JP, McGrath MS, Granger JF, Stoodley P, Dusane DH. Antibiotic loaded calcium sulfate bead and pulse lavage eradicates biofilms on metal implant materials in vitro. J Orthop Res. 2018;36(9):2349-2354. https://doi.org/10.1002/jor.23903
  24. Butini ME, Cabric S, Trampuz A, Di Luca M. In vitro anti-biofilm activity of a biphasic gentamicin-loaded calcium sulfate/hydroxyapatite bone graft substitute. Colloids Surf B Biointerfaces. 2018;161:252-260. https://doi.org/10.1016/j.colsurfb.2017.10.050
  25. McKellar QA, Sanchez Bruni SF, Jones DG. Pharmacokinetic/pharmacodynamic relationships of antimicrobial drugs used in veterinary medicine. J Vet Pharmacol Ther. 2004;27(6):503-514. https://doi.org/10.1111/j.1365-2885.2004.00603.x
  26. Dusane DH, Brooks JR, Sindeldecker D, Peters CW, Li A, Farrar NR, et al. Complete killing of agar lawn biofilms by systematic spacing of antibiotic-loaded calcium sulfate beads. Materials (Basel). 2019;12(24):4052.
  27. Ensing GT, van Horn JR, van der Mei HC, Busscher HJ, Neut D. Copal bone cement is more effective in preventing biofilm formation than Palacos R-G. Clin Orthop Relat Res. 2008;466(6):1492-1498. https://doi.org/10.1007/s11999-008-0203-x
  28. Luo S, Jiang T, Long L, Yang Y, Yang X, Luo L, et al. A dual PMMA/calcium sulfate carrier of vancomycin is more effective than PMMA-vancomycin at inhibiting Staphylococcus aureus growth in vitro. FEBS Open Bio. 2020;10(4):552-560. https://doi.org/10.1002/2211-5463.12809
  29. Brooks JR, Dusane DH, Moore K, Gupta T, Delury C, Aiken SS, et al. Pseudomonas aeruginosa biofilm killing beyond the spacer by antibiotic-loaded calcium sulfate beads: an in vitro study. J Bone Jt Infect. 2021;6(5):119-129. https://doi.org/10.5194/jbji-6-119-2021
  30. Gonzalez-Martin M, Silva V, Poeta P, Corbera JA, Tejedor-Junco MT. Microbiological aspects of osteomyelitis in veterinary medicine: drawing parallels to the infection in human medicine. Vet Q. 2022;42(1):1-11. https://doi.org/10.1080/01652176.2021.2022244
  31. Diez-Pena E, Frutos G, Frutos P, Barrales-Rienda JM. Gentamicin sulphate release from a modified commercial acrylic surgical radiopaque bone cement. I. Influence of the gentamicin concentration on the release process mechanism. Chem Pharm Bull (Tokyo). 2002;50(9):1201-1208. https://doi.org/10.1248/cpb.50.1201
  32. Hsieh PH, Tai CL, Lee PC, Chang YH. Liquid gentamicin and vancomycin in bone cement: a potentially more cost-effective regimen. J Arthroplasty. 2009;24(1):125-130. https://doi.org/10.1016/j.arth.2008.01.131
  33. Oliver RA, Lovric V, Christou C, Aiken SS, Cooper JJ, Walsh WR. Application of calcium sulfate for dead space management in soft tissue: characterisation of a novel in vivo response. BioMed Res Int. 2018;2018:8065141.
  34. Ham K, Griffon D, Seddighi M, Johnson AL. Clinical application of tobramycin-impregnated calcium sulfate beads in six dogs (2002-2004). J Am Anim Hosp Assoc. 2008;44(6):320-326. https://doi.org/10.5326/0440320
  35. Uchino M, Sugo K, Naruse K, Uchida K, Hirakawa N, Toyama M, et al. Elution characteristics of vancomycin, gentamicin, and vancomycin/gentamicin combination from calcium phosphate cement. Adv Orthop Surg. 2015;2015:257925.
  36. McConoughey SJ, Howlin RP, Wiseman J, Stoodley P, Calhoun JH. Comparing PMMA and calcium sulfate as carriers for the local delivery of antibiotics to infected surgical sites. J Biomed Mater Res B Appl Biomater. 2015;103(4):870-877. https://doi.org/10.1002/jbm.b.33247
  37. Richelsoph KC, Webb ND, Haggard WO. Elution behavior of daptomycin-loaded calcium sulfate pellets: a preliminary study. Clin Orthop Relat Res. 2007;461(461):68-73. https://doi.org/10.1097/BLO.0b013e3181123889
  38. McPherson EJ, Dipane MV, Chowdhry M, Wassef AJ. Fabrication of antibiotic-loaded dissolvable calcium sulfate beads: an in vitro mixing lab utilizing various antibiotic mixing formulas. J Bone Jt Infect. 2021;6(9):405-412. https://doi.org/10.5194/jbji-6-405-2021
  39. Lewry AJ, Williamson J. The setting of gypsum plaster. J Mater Sci. 1994;29(21):5524-5528. https://doi.org/10.1007/BF00349943
  40. Armstrong DG, Stephan KT, Espensen EH, Lipsky BA, Boulton AJ. What is the shelf life of physician-mixed antibiotic-impregnated calcium sulfate pellets? J Foot Ankle Surg. 2003;42(5):302-304. https://doi.org/10.1016/S1067-2516(03)00307-7