DOI QR코드

DOI QR Code

보령 갯벌의 인위적 영향 및 생물학적 요인에 따른 대형저서동물 군집 변화

Changes in Macrobenthic Community Depending on the Anthropogenic Impact and Biological Factors of Boryeong Tidal Flat, Korea

  • 전승렬 (국립수산과학원 갯벌연구센터) ;
  • 옹기호 (제주대학교 해양생명과학과) ;
  • 이지호 (국립수산과학원 갯벌연구센터) ;
  • 정윤아 (국립수산과학원 갯벌연구센터) ;
  • 구준호 (국립수산과학원 갯벌연구센터) ;
  • 오광석 (해온부유생태연구소) ;
  • 박종우 (국립수산과학원 갯벌연구센터)
  • SEUNG RYUL JEON (Tidal Flat Research Center, National Institute of Fisheries Science) ;
  • GIHO ONG (Department of Marine Life Science, Jeju National University) ;
  • JIHO LEE (Tidal Flat Research Center, National Institute of Fisheries Science) ;
  • YUNA JEONG (Tidal Flat Research Center, National Institute of Fisheries Science) ;
  • JUN-HO KOO (Tidal Flat Research Center, National Institute of Fisheries Science) ;
  • KWANG-SEOK O (Haeon Plankton Ecology Research Institute) ;
  • JONG-WOO PARK (Tidal Flat Research Center, National Institute of Fisheries Science)
  • 투고 : 2023.09.08
  • 심사 : 2023.11.22
  • 발행 : 2023.11.30

초록

본 연구는 바지락과 쏙의 서식 구역이 대비되는 보령 주교 갯벌의 인위적인 환경 영향에 의한 저서동물 군집 특성을 확인하였다. 조사 기간 내 대형저서동물은 총 55종이 출현하였으며, 평균 서식밀도는 338 ind./m2, 생체량은 212.2 gWWt/m2이었다. 출현 종수는 상부(27종)에서 하부(37종)로 갈수록 증가하였고, 우점종은(상부: 둥근가시사자머리참갯지렁이, 중부: 고리버들갯지렁이, 하부: 바지락) 조위별로 다르게 나타났다. 집괴분석과 다차원척도법을 이용한 상위 10종의 저서동물 군집구조는 하부의 바지락 어장과 쏙 서식공 밀도가 높은 중부 정점 중심의 두 그룹으로 나뉘며, 특정 생물 종의 영향을 반영하였다. 쏙 서식 공간의 퇴적물 입도 조성은 변동 폭이 컸으나 연간 유지되었으며, 분급은 2.1 𝜑로 낮아져 같은 입자로 구성된 비율이 증가하였다. 특히, 중부는 인위적인 영향이 높음에도 고리버들갯지렁이가 우점하고, 쏙 서식공 밀도와의 연관성을 보여 이는 종간 상호작용에 기인하는 것으로 판단된다.

This study confirmed the characteristics of macrobenthic community due to anthropogenic environmental changes in the Boryeong Jugyo tidal flat, where the habitat of manila clam (Ruditapes philippinarum) and mud shrimp (Upogebia major) is separated. The total number of occurring species was 55 during the study period with an average habitat density of 338 ind./m2 and a biomass of 212.2 gWWt/m2. The number of occuring species increased from 27 species at the upper flat to 37 species at the lower flat, and the dominant species differed by tide levels (Upper: Leonnates persica, Middle: Heteromastus filiformis, Lower: R. philippinarum). The macro-benthic community sturctures of the top 10 species using cluster analysis and nMDS were divided into two groups, focusing on Manila clam culture farm of lower flats and middle flats with high habitat density, reflecting the influence of specific species. The sediment composition of the U. major habitat space fluctuated highly, but it was maintained annually, and the sorting coefficient was 2.1 𝜑, and the proportion of the same particle size was increased. In particular, because the middle flat has a dense anthropogenic impact, a dominant species, H. filiformis dominated and revealed a relationship with the density of burrow holes of U. major, which is considered to be a biological interaction between these two macrofauna in this tidal flat.

키워드

과제정보

이 논문은 국립수산과학원 수산과학연구사업 '연안어장 환경조사 및 변동연구(R2023014)'의 연구비 지원에 의해 작성되었습니다. 그리고 수정 사항을 세심히 지적해 주신 심사위원분들께 감사드립니다.

참고문헌

  1. 충청남도, 2019. 어장 환경개선 지원사업. 바지락 어장 경운 작업일지.
  2. 충청씨그랜트, 2017. 충청씨그랜트사업 최종보고서 제2권. 2014-0407, 403-451.
  3. Arias, A., S.A. Woodin and H. Paxton, 2023. An Introduction to Diopatra, the amazing ecosystem engineering polychaete. Biol., 12(7): 1027.
  4. Bilyard, G.R., 1987. The value of benthic infauna in marine pollution monitoring studies. Mar. Pollut. Bull., 18(11): 581-585. https://doi.org/10.1016/0025-326X(87)90277-3
  5. Borja, A., J. Franco and V. Perez, 2000. A Marine Biotic Index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Mar. Pollut. Bull., 40(12): 1100-1114. https://doi.org/10.1016/S0025-326X(00)00061-8
  6. Bray, J.R. and J.T. Curtis, 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr., 27: 325-349. https://doi.org/10.2307/1942268
  7. Can, E., T. Kevrekidis and B. Cihangir, 2009. Factors affecting monthly variation in population density of the capitellid polychaete Heteromastus filiformis in a hyperhaline Mediterranean coastal lagoon. Trans. Wat. Bull., 3: 10-23.
  8. Choi, J.W. and J.Y. Seo, 2007. Application of biotic indices to assess the health condition of benthic community in Masan Bay, Korea. Ocean Polar Res., 29(4): 339-348. https://doi.org/10.4217/OPR.2007.29.4.339
  9. Cigarria, J. and J.M. Fernandez, 2000. Management of Manila clam beds I. Influence of seed size, type of substratum and pretection on initial mortality. Aquaculture, 182: 173-182. https://doi.org/10.1016/S0044-8486(99)00257-4
  10. D'Andrea, A.F. and T.H. DeWitt, 2009. Geochemical ecosystem engineering by the mud shrimp Upogebia pugettensis (Crustacea: Thalassinidae) in Yaquina Bay, Oregon: Density-dependent effercts on organic matter remineralization and nutrient cycling. Limnol. Oceanogr., 54(6): 1911-1932. https://doi.org/10.4319/lo.2009.54.6.1911
  11. Dauer, D.M., 1984. High resilience to disturbance of an estuarine polychaeta community. Bull. Mar. Sci., 34: 170-174.
  12. Day, J.W.Jr., C.A.S. Hall, W.M. Kemp and A. Yanez-Arancibia, 1989. Estuarine Ecology, John Wiley, New York. 588 pp.
  13. Folk, R.L., 1954. The distinction between grain size and mineral composition in sedimentary-rock nomenclature. J. Geol., 62(4): 344-359. https://doi.org/10.1086/626171
  14. Gray, J.S., R.S. Wu and Y.Y. Or, 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Mar. Ecol. Progr. Ser., 238: 249-279. https://doi.org/10.3354/meps238249
  15. Hong, J.S., 2013. Biology of the mud shrimp Upogebia major (de Haan, 1841), with particular reference to pest management for shrimp control in Manila clam bed in the west coast of Korea. Ocean Polar Res., 35(4): 323-349. https://doi.org/10.4217/OPR.2013.35.4.323
  16. Hou, W., X. Wei, W. Bai, Y. Zheng, Q. Tan, Z. Liu, B. Rong and C. Ge, 2023. Effects of Manila clam Ruditapes philippinarum culture on the macrobenthic community. Front. Mar. Sci., 10: 1-12. https://doi.org/10.3389/fmars.2023.1084386
  17. Howard, J.D. and R.W. Frey, 1975. Estuaries of the Georgia Coast, USA: sedimentology and biology. II. Regional animal-sediment characteristics of Georgia estuaries. Senckenb. Mar., 7: 33-103.
  18. Hwang, D.W., G. Kim and H.S. Yang, 2008. Active exchange of water and nutrients between seawater and shallow pore water in intertidal sandflats. Ocean Sci. J., 43: 223-232. https://doi.org/10.1007/BF03029926
  19. Jang, S.Y. and H.C. Shin, 2016. Differences in the community structures of macrobenthic Polychaetes from farming grounds and natural habitats in Gamak Bay. J. Korean Soc. Mar. Environ. Energy, 19(4): 297-309. https://doi.org/10.7846/JKOSMEE.2016.19.4.297
  20. Jeon, S.R., G. Ong, J.H. Koo, J.W. Park, Y.C. Kim, H.D. Jeung and J.K. Cho, 2022. Comparison of the seawater-sediment environment and habitat properties with variable mud shrimp Upogebia major burrow hole density and its influence on recruitment and settlement in the Cheonsu Bay tidal flats. Korean J. Fish. Aquat. Sci., 55(2): 171-182.
  21. Jung, R.H., D.W. Hwang, W.G. Kim, B.S. Koh, J.H. Song and H.G. Choi, 2010. Temporal variations in the sedimentation rate and benthic environment of intertidal surface sediments around Byeonsan peninsula, Korea. Korean J. Fish. Aquat. Sci., 43(6): 723-734. https://doi.org/10.5657/kfas.2010.43.6.723
  22. Jung, R.H., I.S. Seo, W.C. Lee, H.C. Kim, S.R. Park, J.B. Kim, C.W. Oh and B.M. Choi, 2014. Community structure and health assessment of macrobenthic assemblages at spring and summer in Cheonsu Bay, west coast of Korea. J. Korean Soc. Oceanogr., The Sea, 19(4): 272-286. https://doi.org/10.7850/jkso.2014.19.4.272
  23. Kanaya, G., T. Suzuki and E. Kikuchi, 2011. Spatiotemporal variations in macrozoobenthic assemblage structures in a river-affected lagoon (Idoura Lagoon, Sendai Bay, Japan): Influences of freshwater inflow. Estuar. Coast. Shelf Sci., 92: 169-179. https://doi.org/10.1016/j.ecss.2010.12.029
  24. Kinoshita, K., 2002. Burrow structure of the mud shrimp Upogebia major (Decapoda; Thalassinidea; Upogebiidae). J. Crustac. Biol., 22(2): 474-480. https://doi.org/10.1163/20021975-99990255
  25. Korea Marine Environment Management Corporation (KOEM), 2015. National survey on marine ecosystem (Tidal flat ecosystem). 348 pp.
  26. Korea Marine Environment Management Corporation (KOEM), 2017. National survey on marine ecosystem (Tidal flat ecosystem). 587 pp.
  27. Korea Marine Environment Management Corporation (KOEM), 2019. National survey on marine ecosystem (Tidal flat ecosystem). 448 pp.
  28. Lee, J.H. and J. Ryu, 2018. Short-term variation in spatial distribution of the macrozoobenthic community near the Geum river estuary, Korea. J. Korean Soc. Mar. Environ. Energy, 21(4): 368-380. https://doi.org/10.7846/JKOSMEE.2018.21.4.368
  29. Marine Biodiversity Institute of Korea (MABIK), 2021. National list of marine species (Marine invertebrates). MABIK, 523 pp.
  30. Ministry for Food, Agriculture, Forestry and Fisheries (MFAFF), 2012. A survey on current status of tidal flat fisheries in oil spilled areas. 742 pp.
  31. Ministry of Land, Transport and Maritime Affairs (MLTM), 2011. Basic survey of coastal wetland (Detailed investigation). 344 pp.
  32. Ministry of Oceans and Fisheries (MOF), 2013. A study on the investigation of sand erosion prevention method and habitat restoration of useful species in tidal flat. Sejong, Korea, 219 pp.
  33. Ministry of Oceans and Fisheries (MOF), 2018. Marine environment standard methods. MOF, Sejong, Korea, 644 pp.
  34. Muus, B.J., 1967. The fauna of Danish estuaries and lagoons: Distribution and ecology of dominating species in the shallow reaches of the mesohaline zone. Meddelelser fra Danmarks Fiskeri-og Havundersogelser (Ny Serie) 5: 1-316.
  35. National Institute of Fisheries Science (NIFS), 2017. Development of the best management strategies for Manila clam aquaculture in tidal flat. 2017 Report of National Institute of Fisheries Science, 99 pp.
  36. Nordberg, K., I.P. Asteman, T.M. Gallagher and A. Robijn, 2017. Recent oxygen depletion and benthic faunal change in shallow areas of Sannas Fjord, Swedish west coast. J. Sea Res., 127: 46-62. https://doi.org/10.1016/j.seares.2017.02.006
  37. Oeschger, R. and B. Vismann, 1994. Sulphide tolerance in Heteromastus filiformis (Polychaeta): Mitochondrial adaptations. Ophelia 40: 147-158. https://doi.org/10.1080/00785326.1994.10430581
  38. Park, H.S., H.S. Lim and J.S. Hong, 2000. Spatio- and temporal patterns of benthic environment and macrobenthos community on subtidal soft-bottom in Chonsu Bay, Korea. Korean J. Fish. Aquat. Sci., 33(3): 262-271.
  39. Park, K.J., S. Heo, J.H. Lee, H.N. Oh and S.O. Ryu, 2018. Characteristics of seed occurrence and inhabited environments of Manila clam, Ruditapes philippinarum beds in the west coast of Korea. Korean J. Malacol., 34(1): 17-29. https://doi.org/10.9710/kjm.2018.34.1.17
  40. Pearson, T.H. and R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev., 16: 229-311.
  41. Pillay, D. and G.M. Branch, 2011. Bioengineering effects of burrowing thalassinidean shrimps on marine soft-bottom ecosystems. Oceanogr. Mar. Biol. Ann. Rev., 49: 137-192. https://doi.org/10.1201/b11009-5
  42. Posey, M.H., B.R. Dumbauld and D.A. Armstrong, 1991. Effects of a burrowing mud shrimp, Upogebia pugettensis (Dana), on abundances of macro-infauna. J. Exp. Mar. Biol. Ecol., 148(2): 283-294. https://doi.org/10.1016/0022-0981(91)90088-E
  43. Ritter, C., P.A. Montagna and S. Applebaum, 2005. Short-term succession dynamics of macrobenthos in a salinity-stressed estuary. J. Exp. Mar. Biol. Ecol., 323: 57-69. https://doi.org/10.1016/j.jembe.2005.02.018
  44. Rosenberg, R. and H.C. Nilsson, 2005. Deterioration of soft-bottom benthos along the Swedish Skagerrak coast. J. Sea Res., 54(3): 231-242. https://doi.org/10.1016/j.seares.2005.04.003
  45. Ryu, S.O., J.Y. Kim, J.H. Chang, Y.G. Cho, S.E. Shin and G.Y.N. Eun, 2006. A study on the transport mechanism of tidal beach sediments I. Deukryang Bay, south coast of Korea. J. Korean Earth Sci. Soc., 27: 221-235.
  46. Seo, I.S. and J.S. Hong, 2004. The community ecology of benthic macrofauna on the Cheokjeon tidal flat, Incheon Korea. 2. Spatio-temporal distribution patterns of the major dominant species. J. Korean Soc. Oceanogr. The Sea, 9(3): 93-105.
  47. Shaffer, P.L., 1983. Population Ecology of Heteromastus filiformis (Polychaeta: Capitellidae). Neth. J. Sea Res., 17: 106-125. https://doi.org/10.1016/0077-7579(83)90009-1
  48. Shannon, C.E. and W. Weaver, 1949. The mathematical theory of communication, University of Illinois Press, Urbana, pp. 125.
  49. Simpson, E.H., 1949. Measurement of diversity. Nature, 163: 688.
  50. Sturdivant, S.K., R.D. Seitz and R.J. Diaz, 2013. Effects of seasonal hypoxia on macrobenthic production and function in the Rappahannock River, Virginia, USA. Mar. Ecol. Prog. Ser., 490: 53-68. https://doi.org/10.3354/meps10470
  51. Sumida, P.Y.G., A.Z. Guth, C.O. Quintana and M.S. Pires-Vanin, 2020. Distribution and sediment selection by the mud shrimp Upogebia noronhensis (Crustacea: Thalassinidea) and the potential effects on the associated macroinfaunal community. J. Mar. Sci. Eng., 8(12): 1032.
  52. Tamaki, A., 1985. Inhibition of larval recruitment of Armandia sp. (Polychaeta: Opheliidae) by established adults of Pseudopolydora paucibranchiata (Okuda) (Polychaeta: Spionidae) on an intertidal sand flat. J. Exp. Mar. Biol. Ecol., 87, 67-82 https://doi.org/10.1016/0022-0981(85)90193-5
  53. Tezuka, N., M. Kanematsu, K. Asami, K. Sakiyama, M. Hamaguchi and H. Usuki, 2013. Effect of salinity and substrate grain size on larval settlement of the Asari clam (Manila clam, Ruditapes philippinarum). J. Exp. Mar. Biol. Ecol., 439: 108-112. https://doi.org/10.1016/j.jembe.2012.10.020
  54. Thompson, D.S., 1995. Substrate additive studies for the development of hardshell clam habitat in waters of Puget Sound in Washington State: An analysis of effects on recruitment, growth, and survival of the Manila clam, Tapes philippinarum, and on the species diversity and abundance of existing benthic organisms. Estuaries, 18: 91-107. https://doi.org/10.2307/1352285
  55. Van Colen, C., F. Montserrat, M. Vincx, P.M.J. Herman, T. Ysebaert and S. Degraer, 2008. Macrobenthic recovery from hypoxia in an estuarine tidal mudflat. Mar. Ecol. Prog. Ser., 372: 31-42. https://doi.org/10.3354/meps07640
  56. Wildsmith, M.D., T.H. Rose, I.C. Potter, R.M. Warwick, K.R. Clarke and F.J. Valesini, 2009. Changes in the benthic macroinvertbrate fauna of a large macrotidal estuary following extreme modifications aimed at reducing eutrophication. Mar. Pollut. Bull., 58(9): 1250-1262. https://doi.org/10.1016/j.marpolbul.2009.06.008
  57. Wotton, R.S. and B. Malmqvist, 2001. Feces in aquatic ecosystems: feeding animals transform organic matter into fecal pellets, which sink or are transported horizontally by currents; these fluxes relocate organic matter in aquatic ecosystems. Bioscience, 51(7): 537-544. https://doi.org/10.1641/0006-3568(2001)051[0537:FIAE]2.0.CO;2
  58. Yoon, S.P., J.H. Song., Y.S. Choi, K.J. Park, S.O. Chung and H.K. Han, 2014. The impact of sand addition to an intertidal area for the development of the Manila clam, Ruditapes philippinarum habitat on benthic community structure (the case of Ojjeom tidal flat in Gonam-myeon, Taean-gun). Korean J. Malacol., 30(3): 259-271. https://doi.org/10.9710/kjm.2014.30.3.259
  59. Yoon, S.P., R.H. Jung, Y.J. Kim, S.G. Kim, M.K. Choi, W.C. Lee, H.T. Oh and S.J. Hong, 2009. Macrobenthic community structure along the environmental gradients of Ulsan Bay, Korea. J. Korean Soc. Oceanogr., The Sea, 14(2): 102-117.
  60. Ysebaert, T. and P.M.J. Herman, 2002. Spatial and temporal variation in benthic macrofauna and relationships with environmental variables in an estuarine, intertidal soft-sediment environment. Mar. Ecol. Porg. Ser., 244: 105-124. https://doi.org/10.3354/meps244105
  61. Zibrowius, H., 1991. Ongoing modification of the Mediterranean marine fauna and flora by the establishment of exotic species. Mesogee, 51: 83-107.