DOI QR코드

DOI QR Code

Surface Engineering of GaN Photoelectrode by NH3 Treatment for Solar Water Oxidation

  • Soon Hyung Kang (Department of Chemistry Education and Optoelectronic Convergence Research Center, Chonnam National University) ;
  • Jun-Seok Ha (Department of Advanced Chemicals and Engineering, Chonnam National University)
  • 투고 : 2023.05.09
  • 심사 : 2023.08.28
  • 발행 : 2023.11.30

초록

Photoelectrochemical (PEC) water splitting is a vital source of clean and sustainable hydrogen energy. Moreover, the large-scale H2 production is currently necessary, while long-term stability and high PEC activity still remain important issues. In this study, a GaN-based photoelectrode was modified by an additional NH3 treatment (900℃ for 10 min) and its PEC behavior was monitored. The bare GaN exhibited a highly crystalline wurtzite structure with the (002) plane and the optical bandgap was approximately 3.2 eV. In comparison, the NH3-treated GaN film exhibited slightly reduced crystallinity and a small improvement in light absorption, resulting from the lattice stress or cracks induced by the excessive N supply. The minor surface nanotexturing created more surface area, providing electroactive reacting sites. From the surface XPS analysis, the formation of an N-Ga-O phase on the surface region of the GaN film was confirmed, which suppressed the charge recombination process and the positive shift of EFB. Therefore, these effects boosted the PEC activity of the NH3-treated GaN film, with J values of approximately 0.35 and 0.78 mA·cm-2 at 0.0 and 1.23 VRHE, respectively, and an onset potential (Von) of -0.24 VRHE. In addition, there was an approximate 50% improvement in the J value within the highly applied potential region with a positive shift of Von. This result could be explained by the increased nanotexturing on the surface structure, the newly formed defect/trap states correlated to the positive Von shift, and the formation of a GaOxN1-x phase, which partially blocked the charge recombination reaction.

키워드

과제정보

This research was supported by grants (2018R1A6A1A03024334, 2019R1A2C1007637, 2021M3I3A1082880, 2021R1I1A1A01044174) of the Basic Science Research Program through the National Research Foundation of Korea (NRF) and grant (2019R1A6C1010024) of the Basic Science Research Capacity Enhancement Project through the Korea Basic Science Institute. The authors are grateful to the Center for Research Facilities at Chonnam National University for their assistance in the analysis of the GaN and NH3-treated GaN films using FESEM and XRD.

참고문헌

  1. A. Fujishima and K. Honda, Nature, 1972, 238, 37-38.  https://doi.org/10.1038/238037a0
  2. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Chem. Rev., 2010, 110(11), 6446-6473.  https://doi.org/10.1021/cr1002326
  3. M. R. Shaner, H. A. Atwater, N. S. Lewis, and E. W. McFarland, Energy Environ. Sci., 2016, 9, 2354-2371.  https://doi.org/10.1039/C5EE02573G
  4. P. Varadhan, H.-C. Fu, D. Priante, J. R. D. Retamal, C. Zhao, M. Ebaid, T. K. Ng, I. Ajia, S. Mitra, I. S. Roqan, B. S. Ooi, and J.-H. He, Nano Lett., 2017, 17(3), 1520-1528.  https://doi.org/10.1021/acs.nanolett.6b04559
  5. Y. Wang, B. AlOtaibi, F. A. Chowdhury, S. Fan, M. G. Kibria, L. Li, C.-J. Li, and Z. Mi, APL Mater., 2015, 3, 116106. 
  6. M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, ACS Nano, 2013, 7(9), 7886-7893.  https://doi.org/10.1021/nn4028823
  7. J. I. Khan, A. Adhikari, J. Sun, D. Priante, R. Bose, B. S. Shaheen, T. K. Ng, C. Zhao, O. M. Bakr, B. S. Ooi, and O. F. Mohammed, Small, 2016, 12(17), 2313-2320.  https://doi.org/10.1002/smll.201503651
  8. C. Yang, L. Liu, S. Zhu, Z. Yu, X. Xi, S. Wu, H. Cao, J. Li, and L. Zhao, J. Phys. Chem. C, 2017, 121(13), 7331-7336.  https://doi.org/10.1021/acs.jpcc.7b00748
  9. Y. J. Kim, G. J. Lee, S. Kim, J.-W. Min, S. Y. Jeong, Y. J. Yoo, S. H. Lee, and Y. M. Song, ACS Appl. Mater. Interfaces, 2018, 10(34), 28672-28678.  https://doi.org/10.1021/acsami.8b09084
  10. X. Zhang, B. Zhang, K. Cao, J. Brillet, J. Chen, M. Wang, and Y. Shen, J. Mater. Chem. A, 2015, 3, 21630-21636.  https://doi.org/10.1039/C5TA05838D
  11. J. He, M. Feng, Y. Zhong, J. Wang, R. Zhou, H. Gao, Y. Zhou, Q. Sun, J. Liu, Y. Huang, S. Zhang, H. Wang, M. Ikeda, and H. Yang, Sci. Rep., 2018, 8, 7922. 
  12. D. Ghosh, P. Devi, and P. Kumar, ACS Appl. Mater. Interfaces, 2020, 12(12), 13797-13804.  https://doi.org/10.1021/acsami.9b20969
  13. S. Han, S. Noh, Y.-T. Yu, C.-R. Lee, S.-K. Lee, and J. S. Kim, ACS Appl. Mater. Interfaces, 2020, 12(52), 58028-58037.  https://doi.org/10.1021/acsami.0c17811
  14. I. V. Bagal, M. Arunachalam, A. Abdullah, A. Waseem, M. A. Kulkarni, S. H. Kang, and S.-W. Ryu, J. Energy Chem., 2022, 71, 45-55.  https://doi.org/10.1016/j.jechem.2022.03.015
  15. Y. J. Seo, M. Arunachalam, K.-S. Ahn, and S. H. Kang, Appl. Surf. Sci., 2021, 551, 149375. 
  16. M. Arunachalam, G. Yun, Y.-H. Yun, K.-S. Ahn, and S. H. Kang, ACS Sustainable Chem. Eng., 2019, 7(4), 4495-4507.  https://doi.org/10.1021/acssuschemeng.8b06628
  17. L. Gao, F. Li, H. Hu, X. Long, N. Xu, Y. Hu, S. Wei, C. Wang, J. Ma, and J. Jin, ChemSusChem, 2018, 11(15), 2502-2509.  https://doi.org/10.1002/cssc.201800999
  18. Y. Tang, Y. Li, W. Guo, J. Wang, X. Li, S. Chen, S. Mu, Y. Zhao, and F. Gao, J. Mater. Chem. A, 2018, 6, 623-632. https://doi.org/10.1039/C7TA09590B