DOI QR코드

DOI QR Code

생체모사형 나노포어를 활용한 전기화학 기반 물질전달 조절 시스템

Electrochemical Mass Transport Control in Biomimetic Solid-State Nanopores

  • Soongyu Han (Department of Chemistry and Research Institute of Molecular Alchemy Gyeongsang National University) ;
  • Yerin Bang (Department of Chemistry and Research Institute of Molecular Alchemy Gyeongsang National University) ;
  • Joon-Hwa Lee (Department of Chemistry and Research Institute of Molecular Alchemy Gyeongsang National University) ;
  • Seung-Ryong Kwon (Department of Chemistry and Research Institute of Molecular Alchemy Gyeongsang National University)
  • 투고 : 2023.11.08
  • 심사 : 2023.11.09
  • 발행 : 2023.11.30

초록

나노포어와 같은 다공성 나노구조물은 물질전달 기초연구뿐만 아니라 수처리, 에너지 변환, 바이오센서 등 다양한 응용 가능성으로 현재 큰 주목을 받고 있다. 초기연구는 수백 나노미터 지름의 포어를 이용한 양/음전하 선택성 물질전달에 주로 집중되었고 현재는 수 나노미터 또는 그 이하의 나노포어를 통한 다기능성 물질전달 시스템이 보고되고 있다. 대표적으로 특정 표적물질(target)과 특이적 결합을 할 수 있는 수용체(receptor)를 포어 내벽에 고정하여 바이러스, 분자, 이온까지 다양한 크기와 성질을 가지는 물질을 선택적으로 수송, 검출할 수 있는 생체모사형 스마트 나노포어 구현 사례가 증가하고 있다. 이와 더불어 생체채널 메커니즘에 기인하여 소수성 나노포어에 전기장, 빛과 같은 외부 자극을 통해 물질전달을 on-off 밸브 형태로 흐름을 능동적으로 제어하는 나노포어도 최근 특히 주목을 받고 있다. 이번 총설에서는 나노포어의 크기(지름, 길이, 구조형태 등), 포어 내벽의 물리화학적 성질을 조절하여 특정 전하, 분자, 이온을 선택적으로 수송 및 제어할 수 있는 나노포어 기반 물질전달 조절 시스템에 관한 동향을 알아본다. 더불어 이를 기반으로 최근 보고된 응용 연구 사례도 함께 소개한다.

Mass transport through nanoporous structures such as nanopores or nanochannels has fundamental electrochemical implications and many potential applications as well. These structures can be particularly useful for water treatment, energy conversion, biosensing, and controlled delivery of substances. Earlier research focused on creating nanopores with diameters ranging from tens to hundreds of nanometers that can selectively transport cationic or anionic charged species. However, recent studies have shown that nanopores with diameters of a few nanometers or even less can achieve more complex and versatile transport control. For example, nanopores that mimic biological channels can be functionalized with specific receptors to detect viruses, small molecules, and even ions, or can be made hydrophobic and responsive to external stimuli, such as light and electric field, to act as efficient valves. This review summarizes the latest developments in nanopore-based systems that can control mass transport based on the size of the nanopores (e.g., length, diameter, and shape) and the physical/chemical properties of their inner surfaces. It also provides some examples of practical applications of these systems.

키워드

과제정보

이 논문은 2023년도 정부(교육부)의 재원으로 한국연구재단의 램프(LAMP) 사업 지원을 받아 수행된 연구임(No. RS-2023-00301974). 이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1C1C100905012, 2022R1A4A102181712).

참고문헌

  1. R. E. Gyurcsanyi, Chemically-modified nanopores for sensing, TrAC, Trends Anal. Chem., 27(7), 627 (2008).
  2. L. Xue, H. Yamazaki, R. Ren, M. Wanunu, A. P. Ivanov, and J. B. Edel, Solid-state nanopore sensors, Nat. Rev. Mater., 5(12), 931 (2020).
  3. K. Fu, S.-R. Kwon, D. Han, P. W. Bohn, Single entity electrochemistry in nanopore electrode arrays: Ion transport meets electron transfer in confined geometries, Acc. Chem. Res., 53(4), 719 (2020).
  4. J. Wang, Y. Cui, and D. Wang, Design of hollow nanostructures for energy storage, conversion and production, Adv. Mater., 31(38), 1801993 (2019).
  5. W. Guo, Y. Tian, and L. Jiang, Asymmetric ion transport through ion-channel-mimetic solid-state nanopores, Acc. Chem. Res., 46(12), 2834 (2013).
  6. W.-J. Lan, M. A. Edwards, L. Luo, R. T. Perera, X. Wu, C. R. Martin, and H. S. White, Voltage-rectified current and fluid flow in conical nanopores, Acc. Chem. Res., 49(11), 2605 (2016).
  7. Z. Zhu, D. Wang, Y. Tian, and L. Jiang, Ion/molecule transportation in nanopores and nanochannels: From critical principles to diverse functions, J. Am. Chem. Soc., 141(22), 8658 (2019).
  8. Y. A. P. Sirkin, M. Tagliazucchi, and I. Szleifer, Transport in nanopores and nanochannels: some fundamental challenges and nature-inspired solutions, Mater. Today Adv., 5, 100047 (2020).
  9. K. Fu, D. Han, C. Ma, and P. W. Bohn, Ion selective redox cycling in zero-dimensional nanopore electrode arrays at low ionic strength, Nanoscale, 9(16), 5164 (2017).
  10. S. H. Kwak, S.-R. Kwon, S. Baek, S.-M. Lim, Y.-C. Joo, and T. D. Chung, Densely charged polyelectrolyte-stuffed nanochannel arrays for power generation from salinity gradient, Sci. Rep., 6(1), 26416 (2016).
  11. S. Baek, S.-R. Kwon, K. Fu, and P. W. Bohn, Ion gating in nanopore electrode arrays with hierarchically organized pH-responsive block copolymer membranes, ACS Appl. Mater. Interfaces, 12(49), 55116 (2020).
  12. Z. Zhang, X.-Y. Kong, K. Xiao, Q. Liu, G. Xie, P. Li, J. Ma, Y. Tian, L. Wen, and L. Jiang, Engineered asymmetric heterogeneous membrane: A concentration-gradient-driven energy harvesting device, J. Am. Chem. Soc., 137(46), 14765 (2015).
  13. I. Vlassiouk, C.-D. Park, S. A. Vail, D. Gust, and S. Smirnov, Control of nanopore wetting by a photochromic spiropyran: A light-controlled valve and electrical switch, Nano Lett., 6(5), 1013 (2006).
  14. X. Zhang, H. Liu, and L. Jiang, Wettability and applications of nanochannels, Adv. Mater., 31(5), 1804508 (2019).
  15. S. Baek, S.-R. Kwon, and P. W. Bohn, Potential-induced wetting and dewetting in hydrophobic nanochannels for mass transport control, Curr. Opin. Electrochem., 34, 100980 (2022).
  16. T. Ma, J.-M. Janot, and S. Balme, Track-etched nanopore/membrane: From fundamental to applications, Small Methods, 4(9), 2000366 (2020).
  17. S. Baek, D. Han, S.-R. Kwon, V. Sundaresan, and P. W. Bohn, Electrochemical zero-mode waveguide potential-dependent fluorescence of glutathione reductase at single-molecule occupancy, Anal. Chem., 94(9), 3970 (2022).
  18. D. Han, L. P. Zaino III, K. Fu, and P. W. Bohn, Redox cycling in nanopore-confined recessed dual-ring electrode arrays, J. Phys. Chem. C, 120(37), 20634 (2016).
  19. L. P. Zaino III, D. A. Grismer, D. Han, G. M. Crouch, and P. W. Bohn, Single occupancy spectroelectrochemistry of freely diffusing flavin mononucleotide in zero-dimensional nanophotonic structures, Faraday Discuss., 184, 101 (2015).
  20. J. Stanley and N. Pourmand, Nanopipettes-The past and the present, APL Mater., 8(10), 100902 (2020).
  21. C. L. Bentley, Scanning electrochemical cell microscopy for the study of (nano)particle electrochemistry: From the sub-particle to ensemble level, Electrochem. Sci. Adv., 2(3), e2100081 (2022).
  22. H. Kwok, K. Briggs, and V. Tabard-Cossa, Nanopore fabrication by controlled dielectric breakdown, PLoS ONE, 9(3), e92880 (2014).
  23. E. T. Acar, S. F. Buchsbaum, C. Combs, F. Fornasiero, and Z. S. Siwy, Biomimetic potassium-selective nanopores, Sci. Adv., 5(2), eaav2568 (2019).
  24. S.-R. Kwon, K. Fu, D. Han, and P. W. Bohn, Redox cycling in individually encapsulated attoliter-volume nanopores, ACS Nano, 12(12), 12923 (2018).
  25. J. Xiong, Q. Chen, M. A. Edwards, and H. S. White, Ion transport within high electric fields in nanogap electrochemical cells, ACS Nano, 9(8), 8520 (2015).
  26. S. Baek, A. R. Cutri, D. Han, S.-R. Kwon, J. Reitemeier, V. Sundaresan, and P. W. Bohn, Multifunctional nanopore electrode array method for characterizing and manipulating single entities in attoliter-volume enclosures, J. Appl. Phys., 132(17), 174501 (2022).
  27. X. Chen, X. Wei, and K. Jiang, The fabrication of high-aspect-ratio, size-tunable nanopore arrays by modified nanosphere lithography, Nanotechnology, 20(42), 425605 (2009).
  28. R. A. Segalman, Patterning with block copolymer thin films, Mater. Sci. Eng. R Rep., 48(6), 191 (2005).
  29. N. A. Lynd, A. J. Meuler, and M. A. Hillmyer, Polydispersity and block copolymer self-assembly, Prog. Polym. Sci., 33(9), 875 (2008).
  30. V. Abetz, Isoporous block copolymer membranes, Macromol. Rapid Commun., 36(1), 10 (2015).
  31. C. Wei, A. J. Bard, and S. W. Feldberg, Current rectification at quartz nanopipet electrodes, Anal. Chem., 69(22), 4627 (1997).
  32. D. Woermann, Electrochemical transport properties of a cone-shaped nanopore: high and low electrical conductivity states depending on the sign of an applied electrical potential difference, Phys. Chem. Chem. Phys., 5(9), 1853 (2003).
  33. R. T. Perera, R. P. Johnson, M. A. Edwards, and H. S. White, Effect of the electric double layer on the activation energy of ion transport in conical nanopores, J. Phys. Chem. C, 119(43), 24299 (2015).
  34. Z. Siwy, E. Heins, C. C. Harrell, P. Kohli, and C. R. Martin, Conical-nanotube ion-current rectifiers: The role of surface charge, J. Am. Chem. Soc., 126(35), 10850 (2004).
  35. I. Vlassiouk and Z. S. Siwy, Nanofluidic diode, Nano Lett., 7(3), 552 (2007).
  36. Y. Tian, X. Hou, and L. Jiang, Biomimetic ionic rectifier systems: Asymmetric modification of single nanochannels by ion sputtering technology, J. Electroanal. Chem., 656(1-2), 231 (2011).
  37. X. Hou, Y. Liu, H. Dong, F. Yang, L. Li, and L. Jiang, A pH-gating ionic transport nanodevice: Asymmetric chemical modification of single nanochannels, Adv. Mater., 22(22), 2440 (2010).
  38. Y.-L. Hu, Y. Hua, Z.-Q. Pan, J.-H. Qian, X.-Y. Yu, N. Bao, X.-L. Huo, Z.-Q. Wu, and X.-H. Xia, PNP nanofluidic transistor with actively tunable current response and ionic signal amplification, Nano Lett., 22(9), 3678 (2022).
  39. S.-W. Nam, M. J. Rooks, K.-B. Kim, and S. M. Rossnagel, Ionic field effect transistors with sub-10 nm multiple nanopores, Nano Lett., 9(5), 2044 (2009).
  40. C. Neale, N. Chakrabarti, P. Pomorski, E. F. Pai, and R. Pomes, Hydrophobic gating of ion permeation in magnesium channel CorA, PLoS Comput. Biol., 11(7), e1004303 (2015).
  41. M. O. Jensen, D. W. Borhani, K. Lindorff-Larsen, P. Maragakis, V. Jogini, M. P. Eastwood, R. O. Dror, and D. E. Shaw, Principles of conduction and hydrophobic gating in K+  channels, Proc. Natl. Acad. Sci. U. S. A., 107(13), 5833 (2010).
  42. O. Beckstein and M. S. P. Sansom, A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor, Phys. Biol., 3(2), 147 (2006).
  43. S. N. Smirnov, I. V. Vlassiouk, and N. V. Lavrik, Voltage-gated hydrophobic nanopores, ACS Nano, 5(9), 7453 (2011).
  44. M. R. Powell, L. Cleary, M. Davenport, K. J. Shea, and Z. S. Siwy, Electric-field-induced wetting and dewetting in single hydrophobic nanopores, Nat. Nanotechnol., 6(12), 798 (2011).
  45. K. Xiao, Y. Zhou, X.-Y. Kong, G. Xie, P. Li, Z. Zhang, L. Wen, and L. Jiang, Electrostatic-charge- and electric-field-induced smart gating for water transportation, ACS Nano, 10(10), 9703 (2016).
  46. G. Xie, P. Li, Z. Zhao, Z. Zhu, X.-Y. Kong, Z. Zhang, K. Xiao, L. Wen, and L. Jiang, Light- and electric-field-controlled wetting behavior in nanochannels for regulating nanoconfined mass transport, J. Am. Chem. Soc., 140(13), 4552 (2018).
  47. S.-R. Kwon, S. Baek, and P. W. Bohn, Potential-induced wetting and dewetting in pH-responsive block copolymer membranes for mass transport control, Faraday Discuss., 233, 283 (2022).
  48. J. Reitemeier, S. Baek, and P. W. Bohn, Hydrophobic gating and spatial confinement in hierarchically organized block copolymer-nanopore electrode arrays for electrochemical biosensing of 4-ethyl phenol, ACS Appl. Mater. Interfaces, 15(33), 39707 (2023).
  49. I. Vlassiouk, T. R. Kozel, and Z. S. Siwy, Biosensing with nanofluidic diodes, J. Am. Chem. Soc., 131(23), 8211 (2009).
  50. A. S. Peinetti, R. J. Lake, W. Cong, L. Cooper, Y. Wu, Y. Ma, G. T. Pawel, M. E. Toimil-Molares, C. Trautmann, L. Rong, B. Marinas, O. Azzaroni, and Y. Lu, Direct detection of human adenovirus or SAR-CoV-2 with ability to inform infectivity using DNA aptamer-nanopore sensors, Sci. Adv., 7(39), eabh2848 (2021). https://doi.org/10.1126/sciadv.abh2848
  51. S.-R. Kwon, S. Baek, K. Fu, and P. W. Bohn, Electrowetting-mediated transport to produce electrochemical transistor action in nanopore electrode arrays, Small, 16(18), 1907249 (2020).
  52. Q. Zhang, J. Kang, Z. Xie, X. Diao, Z. Liu, and J. Zhai, Highly efficient gating of electrically actuated nanochannels for pulsatile drug delivery stemming from a reversible wettability switch, Adv. Mater., 30(4), 1703323 (2018).
  53. C.-Y. Lin, C. Combs, Y.-S. Su, L.-H. Yeh, and Z. S. Siwy, Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power, J. Am. Chem. Soc., 141(8), 3691 (2019).