DOI QR코드

DOI QR Code

Measurement and Verification of Unfrozen Water Retention Curve of Frozen Sandy Soil Based on Pore Water Salinity

간극수 염분농도에 따른 동결 사질토의 부동수분곡선 산정 및 검증 연구

  • Kim, Hee-Won (Dept. of Civil Engrg., Kumoh National Institute of Technology) ;
  • Go, Gyu-Hyun (Dept. of Civil Engrg., Kumoh National Institute of Technology)
  • 김희원 (금오공과대학교 토목공학과) ;
  • 고규현 (금오공과대학교 토목공학과)
  • Received : 2023.10.18
  • Accepted : 2023.10.31
  • Published : 2023.11.30

Abstract

The characteristics of unfrozen water content in frozen soils significantly impact the thermal, hydraulic, and mechanical behavior of the ground. A thorough analysis of the unfrozen water content characteristics of the target subsoil material is crucial for evaluating the stability of frozen ground. This study conducted indoor experiments to measure the freezing point and unfrozen water content of sandy soil while considering pore water salinity. Utilizing the experimental data, we introduced a novel empirical model to conveniently estimate the unfrozen water retention curve. Furthermore, the validity of the unfrozen water retention curve was assessed by comparing the experimental data with the results of a simulation model that utilized the proposed empirical model as input data.

동결토의 부동수분특성은 지반의 열-수리-역학적 거동 전반에 걸쳐 지배적인 영향을 미치며, 동결 지반의 안정성 평가를 위해서는 대상 지반재료의 부동수분특성에 대한 면밀한 검토가 필요하다. 본 연구에서는 간극수 염분농도를 고려한 동결 사질토의 부동수분곡선을 평가하기 위하여 흙의 어는점 및 부동수분을 측정하는 실내 실험을 수행하였으며, 계측된 실험데이터를 기반으로 부동수분포화도 곡선을 간편하게 추정할 수 있는 경험적 모델을 새롭게 제시하였다. 또한, 제안된 경험적 모델을 입력자료로 적용한 해석모델의 시뮬레이션 결과를 실험데이터와 비교함으로써 사용된 부동수분곡선의 적정성을 검증하였다.

Keywords

Acknowledgement

이 연구는 금오공과대학교 대학 연구과제비로 지원되었음(2022-2023).

References

  1. ASTM D1141-98, Standard practice for the preparation of substitute ocean water, 2013.
  2. Burt, T. P. and Williams, P. J. (1976), "Hydraulic Conductivity in Frozen Soils", Earth Surf Process, Vol.1, No.4, pp.349-360. https://doi.org/10.1002/esp.3290010404
  3. Chen, Y., Zhou, Z., Wang, J., Zhao, Y., and Dou, Z. (2021), "Quantification and Division of Unfrozen Water Content during the Freezing Process and the Influence of Soil Properties by Low-field Nuclear Magnetic Resonance", J. Hydrology, Vol.602, pp.126719.
  4. Comsol, Introduction to Comsol Multiphysics, Comsol, Inc., USA, 2023.
  5. Coussy O. Mechanics and physics of porous solids. John Wiley and Sons; 2010.
  6. Coussy O. Poromechanics. John Wiley & Sons: Chichester, UK, 2004.
  7. Coussy, O. and Monteiro, P. (2007), "Unsaturated Poroelasticity for Crystallization in Pores", Comput Geotech, Vol.34, No.4, pp. 279-290. https://doi.org/10.1016/j.compgeo.2007.02.007
  8. Hu, R. and Liu, Q. (2017), Numerical simulation of the effect of groundwater salinity on artificial freezing wall in coastal area, In EGU General Assembly Conference Abstracts, pp.13428.
  9. Khayal, O. M. E. S. (2018), "Fundamentals of Heat Exchangers", Inter. J. of Research in Comp. Applications and Robotics, Vol.6, No.12, pp.1-11.
  10. Kim, S. Y., Hong, W. T., Hong, S. S., Baek, Y., and Lee, J. S. (2016), "Unfrozen Water Content and Unconfined Compressive Strength of Frozen Soils According to Degree of Saturations and Silt Fractions", J. of Korean Geotech. Soci., Vol.32, No.12, pp. 59-67. https://doi.org/10.7843/kgs.2016.32.12.59
  11. Kim, Y. C., Bae, J. H., and Song, W. K. (2002), "An Experimental Study on the Unfrozen Water Contents and Ultrasonic Wave Velocity in Frozen Soil", J. Korean Soc. Civil Eng., Vol.22, No.3C, pp. 207-217.
  12. Kruse, A. M., Darrow, M. M., and Akagawa, S. (2018), "Improvements in Measuring Unfrozen Water in Frozen Soils Using the Pulsed Nuclear Magnetic Resonance Method", J. Cold Reg. Eng. Vol.32, No.1, pp.04017016.
  13. Kweon, G.C. (2003), "Design of Anti-frost Layer Considering Frost Heaving Characteristics of Subgrade Soils", Symposium on Korea Society of Civil Engineers, pp.1786-1791.
  14. Li, Z., Chen, J., and Sugimoto, M. (2020), "Pulsed NMR Measurements of Unfrozen Water Content in Partially Frozen Soil", J. Cold Reg. Eng., Vol.34, No.3, pp.04020013.
  15. Liu (2014), "Influence of Freeze-thaw Cycles on Resilient Modulus of Different Plasticity Index Subgrade Soil", Chinese J. Geot. Eng., Vol.36, No.4, pp.633-639.
  16. Liu, Z. and Yu, X. (2013), "Physically based Equation for Phase Composition Curve of Frozen Soils", Transp. Res. Rec. Vol.2349, No.2349, pp.93-99. https://doi.org/10.3141/2349-11
  17. McKenzie, J. M., Voss, C. I., and Siegel, D. I. (2007), "Groundwater Flow with Energy Transport and Water-ice Phase Change: Numerical Simulations, Benchmarks, and Application to Freezing in Peat Bogs", Adv. Water Resour., Vol.30, No.4, pp.966-983. https://doi.org/10.1016/j.advwatres.2006.08.008
  18. Michalowski, R. L. (1993), "A Constitutive Model of Saturated Soils for Frost Heave Simulations", Cold Regions Sci. Technol., Vol.22, No.1, pp.47-63. https://doi.org/10.1016/0165-232X(93)90045-A
  19. Michalowski, R.L. and Zhu, M. (2006), "Frost Heave Modelling Using Porosity Rate Function", Int. J. Numer. Anal. Meth. Geomech., Vol.30, pp.703-722. https://doi.org/10.1002/nag.497
  20. Nicolsky, D. J., Romanovsky, V. E., Panda, S. K., Marchenko, S. S., and Muskett, R. R. (2017), "Applicability of the Ecosystem Type Approach to Model Permafrost Dynamics Across the Alaska North Slope", J. Geophys. Res. Earth Surf., Vol.122, No.1, pp. 50-75. https://doi.org/10.1002/2016JF003852
  21. Nishimura, S., Gens, A., Olivella, S., and Jardine, R. J. (2009), "THM-Coupled Finite Element Analysis of Frozen Soil: Formulation and Application", Geotechnique, Vol.59, No.3, pp.159-171. https://doi.org/10.1680/geot.2009.59.3.159
  22. Ohrai, T. (1986), "Experimental Studies on the Effects of Ice and Unfrozen Water on the Compressive Strength of Frozen Soil", Ph. D. dissertation, Hokkaido University, Sapporo, Japan.
  23. Osterkamp, T. and Romanovsky, V. (1997), "Freezing of the Active Layer on the Coastal Plain of the Alaskan Arctic", Permafr. Periglac. Process., Vol.8, No.1, pp.23-44. https://doi.org/10.1002/(SICI)1099-1530(199701)8:1<23::AID-PPP239>3.0.CO;2-2
  24. Patterson, D. E. and Smith, M. W. (1981), "The Measurement of Unfrozen Water Content by Time Domain Refrectometry: Result from Laboratory Tests", Can. Geotech. J., Vol.18, No.1, pp.131-144. https://doi.org/10.1139/t81-012
  25. Semin, M., Levin, L., Bublik, S., Brovka, G., Brovka, A., and Agutin, K. (2022), "Parameterization of the Model of Artificial Clay Freezing Considering the Effect of Pore Water Salinity", Fluids, Vol.7, No.6, pp.186.
  26. Shin, E.C. and Park, J.J. (2003), "An Experimental Study on Frost Heaving Pressure Characteristics of Frozen Soils", J. of Korean Geotech. Soci., Vol.19, No.2, pp.65-74.
  27. Smith, M.W. and A.R. Tice. (1988), Measurement of the unfrozen water con-tent of soils. Comparison of NMR and TDR methods. CRREL-88-18. Cold Regions Res. Eng. Lab., Hanover, NH.
  28. Spaans, E.J.A. and Baker, J.M. (1995), "Examining the Use of TDR for Measuring Liquid Water Content in Frozen Soils", Water Resour. Res., Vol.31, No.12, pp.2917-2925. https://doi.org/10.1029/95WR02769
  29. Thomas, H.R., Cleall, P., Li, Y.C., Harris, C., and Kern-Luetschg, M. (2009), "Modeling of Cryogenic Processes in Permafrost and Seasonally Frozen Soils", Geotechnique, Vol.59, No.3, pp.173-184. https://doi.org/10.1680/geot.2009.59.3.173
  30. Tice, A.R., Anderson, D.M., Banin, A. The prediction of unfrozen water contents in frozen soils from liquid limit determinations. Cold Regions Research & Engineering Laboratory, U.S. Army Corps of Engineers, 1976.
  31. Tokoro, T., Ishikawa, T., Shirai, S., and Nakamura, T. (2016), "Estimation Methods for Thermal Conductivity of Sandy Soil with Electrical Characteristics. Soils and foundations", Vol.56, No.5, pp.927-936. https://doi.org/10.1016/j.sandf.2016.08.016
  32. Watanabe, K. and Mizoguchi, M. (2002), "Amount of Unfrozen Water in Frozen Porous Media Saturated with Solution", Cold Regions Sci. Technol., Vol.34, No.2, pp.103-110. https://doi.org/10.1016/S0165-232X(01)00063-5
  33. Westermann, S., Boike, J., Langer, M., Schuler, T., and Etzelmuller, B. (2011), "Modeling the Impact of Wintertime Rain Events on the Thermal Regime of Permafrost", The Cryosphere, Vol.5, No.4, pp.945-959. https://doi.org/10.5194/tc-5-945-2011
  34. Yoshikawa, K., Overduin, P. P., and Harden, J. W. (2004), "Moisture Content Measurements of Moss (Sphagnum spp.) Using Commercial Sensors", Permafr. Periglac. Process., Vol.15, No.4, 309-318. https://doi.org/10.1002/ppp.505
  35. Zhou, M. M. and Meschke, G. (2013), "A Three-phase Thermo- Hydro-mechanical Finite Element Model for Freezing Soils", Int. J. Numer. Anal. Meth. Geomech., Vol.37, No.18, pp.3173-3193. https://doi.org/10.1002/nag.2184