DOI QR코드

DOI QR Code

Dynamic Behavior of Triaxial Micropile Under Varying Installation Angle: A Numerical Analysis

수치해석을 통한 설치 경사각도에 따른 삼축내진말뚝의 동적 거동특성

  • 전준서 (한국건설기술연구원 지반연구본부 ) ;
  • 메론 알레바츄 메코넨 (한국건설기술연구원 지반연구본부 ) ;
  • 김윤아 (한국과학기술원 건설및환경공학과 ) ;
  • 김종관 (한국건설기술연구원 지반연구본부 ) ;
  • 유병수 (한국건설기술연구원 지반연구본부 ) ;
  • 권태혁 (한국과학기술원 건설및환경공학과 ) ;
  • 안성율 ((주)에스와이텍 ) ;
  • 한진태 (한국건설기술연구원 지반연구본부)
  • Received : 2023.10.05
  • Accepted : 2023.10.16
  • Published : 2023.11.30

Abstract

This study employs three-dimensional simulation through FLAC3D to investigate the impact of installation angles on the dynamic characteristics of Triaxial Micropiles. The numerical model is validated against centrifuge test results to ensure accuracy. The findings reveal significant influences of the installation angle on the dynamic behavior of Triaxial Micropiles. Specifically, under seismic conditions such as the Capetown and San Fernando earthquakes, the lowest recorded values for peak bending moment and settlement occurred at an installation angle of 15 degrees. In contrast, when subjected to an artificial earthquake with a frequency of 2 Hz (Sine 2 Hz), Micropiles installed at 0 degrees exhibited the lowest peak bending moment, maximum axial load, and settlement values.

설치 경사각도에 따른 삼축내진말뚝의 동적 거동 특성을 파악하기 위해 3차원 수치해석을 수행하였다. FLAC3D를 통해 3차원 수치모델을 구축하였으며, 동적 원심모형실험과의 비교를 통해 검증하였다. 수치해석 결과, 경사각도에 따라 말뚝의 동적 거동이 확연히 달라짐을 확인하였다. 실지진파 조건(Capetown EQ, San Fernando EQ)에서는 경사각도가 15도 일 때, 다른 경사각도(0도, 30도)에 비해 말뚝의 휨모멘트 및 침하량이 적음을 알 수 있었다. 반면 인공지진파 조건(Sine 2Hz EQ)에 대해서는 경사각도가 0도 일 때 가장 적은 부재력(휨모멘트, 축력) 및 침하량을 보여 지진파의 특성에 따라 동적 거동이 달라짐을 확인하였다.

Keywords

Acknowledgement

본 연구는 한국건설기술연구원의 주요사업인 "건축물 내진성능 확보를 위한 삼축내진말뚝 개선 연구(20230132-001)" 과제의 지원으로 수행되었으며, 이에 깊은 감사를 드립니다.

References

  1. Beringen, F.L., Windle, D., and Van Hooydonk, W. R. (1979), Results of Loading Tests on Driven Piles in Sand, Proceedings of the Conference on Recent Development in the Design and Construction Piles, ICE, London, pp.213-225. 
  2. Chanh, P.V., Tran, N.X., and Kim, S. R. (2018), 2D Numerical Simulation of a Dynamic Centrifuge Test for a Pile-Supported Structure, J. of the Korean Geotechnical Society, Vol.34, No.8, pp.15-26. 
  3. Elsawwaf, A., Nazir, A., and Azzam, W. (2022), The Effect of Combined Loading on the behavior of Micropiled Rafts Installed with Inclined Condition, Environmental Science and Pollution Research, Vol.29, pp.81321-81336.  https://doi.org/10.1007/s11356-022-21327-2
  4. Hwang, T.H., Kim, M.Y., and Lee, Y.S. (2020), Variations of Lateral Bearing Capacity of 2-row Micropile with Installation Conditions by Model Test, J. of the Korean Geotechnical Society, Vol.36, No.11, pp.35-49. 
  5. Itasca Consulting Group (2023), Itasca's FLAC3D 7.0 Documentation, Minnesota, USA. 
  6. Kim, J.H., Hwang, J.I., Han, J.T., and Kim, M.M. (2001), Dynamic Analysis of Inclined Piles and Countermeasures against their Vulnerability, Proceedings of EESK Conference-Fall 2001, Korea, pp.107-115. 
  7. Kim, J.S., Noh, J.S., and Kang, G.C. (2017), Behaviour Characteristics of Single Batter Pile under Dynamic Lateral Loads, J. of the Korean Geotechnical Society, Vol.33, No.9, pp.49-60. 
  8. Kim, S.B., Son, S.W., and Kim, J.M. (2020), Horizontal Behaviour Characteristics of Umbrella-Type Micropile Applied in Sandy Soil Subjected to Seismic Motion, J. of the Korean Geo-Environmental Society, Vol.21, No.7, pp.5-16. 
  9. Kim, T.H., Ahn, K.K. and An. S.Y. (2021), Behavioral Analysis of Triaxial Micropile (TMP) through Field Loading Test and 3D-numerical Analysis, J. of the Korean Geo-Environmental Society, Vol.22, No.4, pp.15-23. 
  10. Kuhlemeyer, R.L. and Lysmer, J. (1973), Finite Element Method Accuracy for Wave Propagation Problems, J. Soil Mech. & Foundations, Div. ASCE, 99(SM45), pp.421-427.  https://doi.org/10.1061/JSFEAQ.0001885
  11. Kwon, O.K. and Park, J.U. (2018), Experimental Behaviour Characteristics of 2×2 Group Pile under Lateral Loads, J. of the Korean Geotechnical Society, Vol.34, No.6, pp.5-16. 
  12. Kyung, D.H. and Lee, J.H. (2017), Interpretative Analysis of Lateral Load-Carrying Behavior and Design Model for Inclined Single and Group Micropiles, Journal of Geotechnical and Geoenvironmental Engineering, Vol.144, No.1, 04017105. 
  13. Lee, J.S., Chae, H.G., Kim, D.S., Jo, S.B., and Park, H.J. (2015), Numerical Analysis of Inverted T-type Wall under Seismic Loading, Computers and Geotechnics, Vol.66, pp.85-95.  https://doi.org/10.1016/j.compgeo.2015.01.013
  14. Oh, J.B., Hwang, T.H., Huh, I.G., Shin, J.H., and Kwon, O.Y. (2015), Horizontal Bearing Characteristics of Micropiles with the Length Ratio and Installation Angle of Pile, J. of the Korean Geotechnical Society, Vol.31, No.6, pp.5-13.  https://doi.org/10.7843/kgs.2015.31.6.5
  15. Wang, Y. and Rolando, P.O. (2023), Numerical Investigation of Inclined Piles under Liquefaction-Induced Lateral Spreading, Geotechnics, Vol.3, No.2, pp.320-346. https://doi.org/10.3390/geotechnics3020019