DOI QR코드

DOI QR Code

차세대 중형 3호의 Magnetic Cleanliness Algorithm

Magnetic Cleanliness Algorithm for Satellite CAS500-3

  • 최정림 (충북대학교 천문우주학과) ;
  • 이동렬 (국가핵융합에너지연구원) ;
  • 이승욱 (충북대학교 천문우주학과) ;
  • 최두영 (충북대학교 천문우주학과) ;
  • 유광선 (한국과학기술원 인공위성연구소)
  • Cheong Rim Choi (Department of Astronomy and Space Science, Chungbuk National University) ;
  • Tongnyeol Rhee (Korea Institute of Fusion Energy) ;
  • Seunguk Lee (Department of Astronomy and Space Science, Chungbuk National University) ;
  • Dooyoung Choi (Department of Astronomy and Space Science, Chungbuk National University) ;
  • Kwangsun Ryu (Satellite Technology Research Center (SaTRec), Korea Advanced Institute of Science and Technology)
  • 투고 : 2023.07.08
  • 심사 : 2023.08.10
  • 발행 : 2023.08.31

초록

위성에서 나오는 자기잡음(magnetic noise)을 줄이는 것은 위성탐사에서 자력계의 성능을 향상시키는 중요한 방법 중의 하나이다. 자기잡음(magnetic noise)를 줄이는 방법 중의 하나가 위성에서 붐(boom)을 길게 뽑아내는 것이나, 이것은 높은 비용과 위성 운용 난이도 측면에서 선호하지 않는 방법이다. 그래서 많은 경우, 자기장 데이터 산출 후에 측정 데이터 세트에서 위성 플랫폼의 자기 간섭을 제거하는 것이 널리 사용된다. 본 연구에서는 붐 없이 태양전지판에 2개 그리고 본체 1개씩 각각 설치된 자력계(magnetometer)에서 관측한 자기잡음(magnetic noise)을 제거하는 알고리즘을 소개하고자 한다.

One of the important ways to improve the performance of magnetometers in satellite exploration is to reduce magnetic noise from satellites. One of the methods to decrease magnetic noise is by extending the satellite boom. However, this approach is often not preferred due to its high cost and operational considerations. Therefore, in many cases, removing interference from the satellite platform in the measured dataset is widely utilized after data acquisition. In this study, we would like to introduce an algorithm for removing magnetic noise observed from magnetometers installed on two solar panels and one main body without a boom.

키워드

과제정보

이 연구는 과학기술정보통신부가 지원하는 한국연구재단(NRF)의 위성개발사업(NRF-2021M1A3A4A06086639)의 지원으로 수행되었습니다. 저자들은 CAS500-3 임무와 KSLV 개발에 참여한 엔지니어들에게 특별한 감사를 표합니다.

참고문헌

  1. Ryu K, Lee S, Woo CH, Lee J, Jang E, et al., Technical paper: science objectives and design of ionospheric monitoring instrument ionospheric anomaly monitoring by magnetometer and plasmaprobe (IAMMAP) for the CAS500-3 satellite, J. Astron. Space Sci. 39, 117-126 (2022). https://doi.org/10.5140/JASS.2022.39.3.117
  2. Behannon KW, Acuna MH, Burlaga LF, Lepping RP, Ness NF, et al., Magnetic field experiment for voyagers 1 and 2, Space Sci. Rev. 21, 235-257 (1977). https://doi.org/10.1007/BF00211541
  3. Dougherty MK, Kellock S, Southwood DJ, Balogh A, Smith EJ, et al., The Cassini magnetic field investigation, Space Sci. Rev. 114, 331-383 (2004). https://doi.org/10.1007/s11214-004-1432-2
  4. Escoubet CP, Schmidt R, Goldstein ML, Cluster - science and mission overview, Space Sci. Rev. 79, 11-32 (1997). https://doi.org/10.1023/A:1004923124586
  5. Ludlam M, Angelopoulos V, Taylor E, Snare RC, Means JD, et al., The THEMIS magnetic cleanliness program, Space Sci. Rev. 141, 171-184 (2008). https://doi.org/10.1007/s11214-008-9423-3
  6. Kato M, Sasaki S, Takizawa Y, The Kaguya Project Team, The Kaguya mission overview, Space Sci. Rev. 154, 3-19 (2010). https://doi.org/10.1007/s11214-010-9678-3
  7. Choi D, Lee S, Kim J, Lee DY, Choi KC, et al., Development of thermostat for the fluxgate magnetometer in icheon geomagnetic observatory and stability evaluation after installation, J. Space Technol. Appl. 2, 221-229 (2022). https://doi.org/10.52912/jsta.2022.2.3.221
  8. Constantinescu OC, Auster HU, Delva M, Hillenmaier O, Magnes W, et al., Principal component gradiometer technique for removal of spacecraft-generated disturbances from magnetic field data, Geosci. Instrum. Methods Data Syst. (2020). https://doi.org/10.5194/gi-2020-10
  9. Jo HJ, Jin H, Park H, Kim KH, Jang Y, et al., Analysis of a cubesat magnetic cleanliness for the space science mission, J. Space Technol. Appl. 2, 41-51 (2022). https://doi.org/10.52912/jsta.2022.2.1.41
  10. Lee J, Sohn J, Park J, Yang TY, Song HS, et al. SNIPE mission for space weather research, J. Space Technol. Appl. 2, 104-120 (2022). https://doi.org/10.52912/jsta.2022.2.2.104