DOI QR코드

DOI QR Code

다중 졸-겔 방법에 의해 증착된 ZnO 막의 형태적 및 구조적 특성평가

Morphological and Structural Characterization of ZnO Films Deposited by Multiple Sol-Gel Methods

  • Muhammad Saqib (Department of Electronic Engineering, Jeju National University) ;
  • Woo Young Kim (Department of Electronic Engineering, Jeju National University)
  • 투고 : 2023.08.24
  • 심사 : 2023.10.30
  • 발행 : 2023.10.31

초록

산화아연 막은 투명한 전도성 물질로써 다양한 분야의 광전자소자에 이용되고 있다. 그러므로 산화아연 막의 특성을 규명하는 것은 광전자소자의 성능을 높이는데 매우 중요한 역할을 할 것이다. 본 논문에서는 이러한 산화아연 막을 용액공정 기반으로 제작하여 형태적, 구조적 특성을 평가하고자 한다. 구체적으로는 졸-겔 방법을 반복적으로 시행하여, 시행 횟수에 따른 산화아연 막의 물성의 변화를 관찰할 것이다. 일정한 용액 조건하에서, 5회의 반복적인 졸-겔 방법을 시행한 결과 결정화가 진행되는 것을 확인하였다. 7회 이상에서는 원소 구성 및 결정화도가 특정 값에 수렴하는 경향을 보였다. 최종적인 산화아연 막의 평균결정의 크기는 약 10.7 nm 정도로 계산되었다. 본 연구를 통해 최적의 결정화를 보이는 공정횟수는 7회였다. 본 연구 결과 및 방법론은 다양한 용액공정 변수를 가변시키면서 적용할 수가 있고 최적의 공정조건을 확립하는데 기여할 것으로 기대한다.

Zinc oxide film is a transparent conductive material and is used in optoelectronic devices in various fields. Therefore, characterization of the zinc oxide film will play a very important role in improving the performance of optoelectronic devices. Here, we will evaluate the morphological and structural characteristics of such a zinc oxide film based on the solution process. Specifically, the sol-gel method will be repeatedly performed to observe the change in material properties of the zinc oxide film according to the number of times of spin-coating. It was confirmed that crystallization proceeded as a result of performing the sol-gel method repetitively 5 times under constant solution conditions. At 7 times or more, the element composition and crystallinity tended to converge to a specific value. The average crystal size of the final zinc oxide film was calculated to be about 10.7 nm. In this study, the number of processes showing optimal crystallization was 7 times. The results and methodology of this study can be applied while varying various solution process variables and are expected to contribute to establishing optimal process conditions.

키워드

과제정보

본 연구는 한국연구재단(NRF- 2021R1A4A2000934, 2021R1F1A1062800)에 의해 지원을 받아 수행되었습니다.

참고문헌

  1. U. OZgur, D. Hofstetter, and H. Morkoc, "ZnO Devices and Applications: A Review of Current Status and Future Prospects", Proceedings of the IEEE, Vol. 98, Issue: 7, pp 1255-1268, (2010). https://doi.org/10.1109/JPROC.2010.2044550
  2. C. W. Litton, D. C. Reynolds, and T. C. Collins, Zinc oxide materials for electronic and optoelectronic device applications, Wiley & Sons, Ltd., pp.29-55, (2011).
  3. K. Ellmer, A. Klein, and B. Rech, Transparent Conductive Zinc Oxide, Springer, pp. 79-124, (2008).
  4. T. Katsuki, F. Nakazawa, S. Sano, Y. Takahashi, and Y. Satoh, "A compact and high optical transmission SAW touch screen with ZnO thin-film piezoelectric transducers", Proceedings of IEEE Ultrasonics Symposium, Vol. 1, pp. 821-824, (2003).
  5. J. A. Anta, E. Guillen, and R. Tena-Zaera, "ZnO-based dye-sensitized solar cells", The Journal of Physical Chemistry C, Vol. 116, No. 21, pp. 11413-11425, (2012). https://doi.org/10.1021/jp3010025
  6. A. Wibowo, M. A. Marsudi, M. I. Amal, M. B. Ananda, R. Stephanie, H. Ardy, L. J. Diguna, "ZnO nanostructured materials for emerging solar cell applications", RSC Advances, Vol. 10, No. 70, pp. 42838-42859, (2020). https://doi.org/10.1039/D0RA07689A
  7. S. J. Pearton and F. Ren, "Advances in ZnO-based materials for light emitting diodes", Current Opinion in Chemical Engineering, Vol. 3, pp. 51-55, (2014). https://doi.org/10.1016/j.coche.2013.11.002
  8. S. I. Inamdar, V. V. Ganbavle, and K. Y. Rajpure, "ZnO based visible-blind UV photodetector by spray pyrolysis", Superlattices Microstructures, Vol. 76, pp. 253-263, (2014). https://doi.org/10.1016/j.spmi.2014.09.041
  9. Y. Kang, F. Yu, L. Zhang, W. Wang, L. Chen, and Y. Li, "Review of ZnO-based nanomaterials in gas sensors", Solid State Ionics, Vol. 360, pp. 115544, (2021).
  10. J. B. Park, M. S. Song, R. Ghosh, R. K. Saroj, Y. Hwang, Y. Tchoe, H. Oh, H. Baek, Y. Lim, B. Kim, S. W. Kim & G. C. Yi, "Highly sensitive and flexible pressure sensors using position- and dimension-controlled ZnO nanotube arrays grown on graphene films", NPG Asia Materials, Vol. 13, No. 1, pp. 1-9, (2021).
  11. K. Kandpal, N. Gupta, J. Singh, and C. Shekhar, "Study of ZnO/BST interface for thin-film transistor (TFT) applications", Surfaces and Interfaces, Vol. 23, pp. 100996, (2021).
  12. W. Gao and Z. Li, "ZnO thin films produced by magnetron sputtering", Ceramics International, Vol. 30, No. 7, pp. 1155-1159, (2004). https://doi.org/10.1016/j.ceramint.2003.12.197
  13. R. Al Asmar, D. Zaouk, P. Bahouth, J. Podleki, and A. Foucaran, "Characterization of electron beam evaporated ZnO thin films and stacking ZnO fabricated by e-beam evaporation and rf magnetron sputtering for the realization of resonators," Microelectronic Engineering, Vol. 83, No. 3, pp. 393-398, (2006). https://doi.org/10.1016/j.mee.2005.10.010
  14. N. M. Sbrockey and S. Genesan, "ZnO thin films by MOCVD", III-Vs Review, Vol. 17, No. 7, pp. 23-25, (2004). https://doi.org/10.1016/S0961-1290(04)00735-5
  15. J. Iqbal, A. Jilani, P. M. Ziaul Hassan, S. Rafique, R. Jafer, and A. A. Alghamdi, "ALD grown nanostructured ZnO thin films: Effect of substrate temperature on thickness and energy band gap", Journal of King Saud University Science, Vol. 28, No. 4, pp. 347-354, (2016). https://doi.org/10.1016/j.jksus.2016.03.001
  16. V. Gerbreders, M. Krasovska, E. Sledevskis, A. Gerbreders, I. Mihailova, E. Tamanisa and A. Ogurcovsa, "Hydrothermal synthesis of ZnO nanostructures with controllable morphology change", CrystEngComm, Vol. 22, No. 8, pp. 1346-1358, (2020). https://doi.org/10.1039/C9CE01556F
  17. S. D. Lee, S. H. Nam, M. H. Kim, and J. H. Boo, "Synthesis and Photocatalytic Property of ZnO nanoparticles Prepared by Spray-Pyrolysis Method", Physics Procedia, Vol. 32, pp. 320-326, (2012). https://doi.org/10.1016/j.phpro.2012.03.563
  18. J. N. Hasnidawani, H. N. Azlina, H. Norita, N. N. Bonnia, S. Ratim, and E. S. Ali, "Synthesis of ZnO Nanostructures Using Sol-Gel Method," Procedia Chemistry, Vol. 19, pp. 211-216, (2016). https://doi.org/10.1016/j.proche.2016.03.095
  19. S. Srujana and D. Bhagat, "Chemical-based synthesis of ZnO nanoparticles and their applications in agriculture", Nanotechnology for Environmental Engineering, Vol. 7, No. 1, pp. 269-275, (2022). https://doi.org/10.1007/s41204-022-00224-6
  20. M. F. Khan, A. H. Ansari, M. Hameedullah, E. Ahmad, F. M. Husain, Q. Zia, U. Baig, M. R. Zaheer, M. M. Alam, A. M. Khan, Z. A. AlOthman, I. Ahmad, G. Md. Ashraf, and G. Aliev "Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics", Scientific Reports, Vol. 6, pp. 27689, (2016).
  21. K. L. Foo, M. Kashif, U. Hashim, and W. W. Liu, "Effect of Different Solvents on the Structural and Optical Properties of Zinc Oxide Thin Films for Optoelectronic Applications", Ceramics International, Vol. 40, pp. 753-761, (2014). https://doi.org/10.1016/j.ceramint.2013.06.065
  22. T. Demes, C. Ternon, D. Riassetto, H. Roussel, L. Rapenne, I. Gelard, C. Jimenez, V. Stambouli, and M. Langlet, "New Insights in the ́Structural and Morphological Properties of Sol-Gel Deposited ZnO Multilayer Films", Journal of Physics and Chemistry of Solids, Vol. 95, pp. 43-55, (2016). https://doi.org/10.1016/j.jpcs.2016.03.017
  23. B. H. Joshi, H. Yoon, H. Y. Kim, J. H. Oh, Y. Y. Seong, S. C. James, and S. S. Yoon, "Effect of Zinc Acetate Concentration on Structural, Optical and Electrical Properties of ZnO Thin Films Deposited by Electrostatic Spray on an ITO Substrate", Journal of The Electrochemical Society, Vol. 159, pp. 716-721, (2012). https://doi.org/10.1149/2.077208jes
  24. D. G. Ayana, R. Ceccato, C. Collini, L. Lorenzelli, V. Prusakova, and S. Dire, "Sol-Gel Derived Oriented Multilayer ZnO Thin Films with ̀Memristive Response", Thin Solid Films, Vol. 615, pp. 427-436, (2016). https://doi.org/10.1016/j.tsf.2016.07.025
  25. S. Khodja, T. Touam, A. Chelouche, F. Boudjouan, D. Djouadi, Z. Hadjoub, A. Fischer, and A. Boudrioua, "Effects of Stabilizer Ratio on Structural, Morphological, Optical and Waveguide Properties of ZnO Nano-Structured Thin Films by a Sol-Gel Process", Superlattices Microstructures, Vol. 75, pp. 485-495, (2014). https://doi.org/10.1016/j.spmi.2014.08.010
  26. F. Boudjouan, A. Chelouche, T. Touam, D. Djouadi, S. Khodja, M. Tazerout, Y. Ouerdane, and Z. Hadjoub, "Effects of Stabilizer Ratio on Photoluminescence Properties of Sol-Gel ZnO Nano-Structured Thin Films", Journal of luminescence, Vol. 158, pp. 32-37, (2015). https://doi.org/10.1016/j.jlumin.2014.09.026
  27. C. A. Norhidayah, S. A. Kamaruddin, N. Nafarizal, S. N. MohdTawil, and M. Z. Sahdan, "Effects of Ageing Time of ZnO Sol on Properties of ZnO Films by Sol Gel Spin Coating", Advanced Materials Research, Vol. 925, pp. 329-333, (2014). https://doi.org/10.4028/www.scientific.net/AMR.925.329
  28. P.Morvillo, R. Diana, R. Ricciardi, E. Bobeico, and C. Minarini, "High Efficiency Inverted Polymer Solar Cells with Solution-Processed ZnO Buffer Layer", Journal of Sol-Gel Science and Technology, Vol. 73, pp. 550-556, (2015). https://doi.org/10.1007/s10971-014-3514-2
  29. A. Singh, D. Kumar, P. K. Khanna, M. Kumar, and B. Prasad, "Post Annealing Effect on Structural and Optical Properties of ZnO Thin Films Derived by Sol-Gel Route", Journal of Materials Science: Materials in Electronics, Vol. 24, pp. 4607-4613, (2013). https://doi.org/10.1007/s10854-013-1451-4
  30. I. Jeon, J. W. Ryan, T. Nakazaki, K. S. Yeo, Y. Negishi, and Y. Matsuo, "Air-Processed Inverted Organic Solar Cells Utilizing a 2- Aminoethanol-Stabilized ZnO Nanoparticle Electron Transport Layer that Requires No Thermal Annealing", Journal of Material Chemistry A, Vol. 2, pp. 18754-18760, (2014). https://doi.org/10.1039/C4TA04595E
  31. M. Caglar and S. Ruzgar, "Influence of the Deposition Temperature on the Physical Properties of High Electron Mobility ZnO Films by Sol-Gel Process", Journal of Alloys and Compounds, Vol. 644, pp. 101-105, (2015). https://doi.org/10.1016/j.jallcom.2015.04.167
  32. A. G. Gomez-Nunez, S. A. Gil, C. Lopez, P. Roura, and A. Vila, "Role of ethanolamine on the stability of a sol-gel ZnO ink", The Journal of Physical Chemistry, Vol. 121, pp. 23839- 23846, (2017). https://doi.org/10.1021/acs.jpcc.7b09935
  33. Mursal, Irhamni, Bukhari and Z. Jalil, "Structural and Optical Properties of Zinc Oxide (ZnO) based Thin Films Deposited by Sol-Gel Spin Coating Method," Journal of physics: Conference series, Vol. 1116, No. 3, pp. 032020, (2018).
  34. M. I. Khan, K. A. Bhatti, R. Qindeel, N. Alonizan, and H. S. Althobaiti, "Characterizations of multilayer ZnO thin films deposited by sol-gel spin coating technique", Results in Physics, Vol. 7, pp. 651-655, (2017). https://doi.org/10.1016/j.rinp.2016.12.029
  35. B. Kadem, H. A. Banimuslem, and A. Hassan, "Modification of morphological and optical properties of ZnO thin film", Karbala International Journal of Modern Science, Vol. 3, No. 2, pp. 103-110, (2017). https://doi.org/10.1016/j.kijoms.2017.04.003
  36. N. B. Patil, A. R. Nimbalkar, and M. G. Patil, "ZnO thin film prepared by a sol-gel spin coating technique for NO2 detection", Materials Science and Engineering: B, Vol. 227, pp. 53-60, (2018). https://doi.org/10.1016/j.mseb.2017.10.011