Acknowledgement
이 논문은 서울여자대학교 학술연구비의 지원에 의한 것임 (2023-0226).
References
- Futuristic Advanced Transportation Division of Seoul City Transportation Office, 「Seoul Transportation in 2022」,
- S.-H. Lee, C.-K. Cheon, B.-D. Jung, B.-Y. Yu, andE.-J. Kim."Study on Methodology for Effect Evaluation of Information Offering to Rail passengers", The Journal of The Korea Institute of Intelligent Transport Systems, Vol. 14, No. 3, pp. 50-62, 2015. DOI:10.12815/kits.2015.14.3.050
- Dong-Wook Kim, Un-yong Kim, Jun-Won Lee,"Application of Multiple Regression Analysis to Improve Congestion in Subway Carriages and Design of Optimization Plan", Korean Institute of Industrial Engineers, Vol. 2013, No. 11, pp. 1 441-1448, 2013.
- Kim, Jin-Su. "Subway Congestion Prediction and Recommendation System Using Big Data Analysis", Journal of Digital Convergence, Vol. 14, No. 11, pp. 289?295, 2016. DOI:10.14400/JDC. 2016.14.11.289
- Mi-Rye Kim, In-Ho Cho."Design of Congestion Standardization System Based on IoT", Journal of the Korea Academia-Industrial Cooperation Society, Vol. 17, No. 5, pp. 74?79, 2016, DOI:10.5762/KAIS.2016.17.5.74
- Jung-Hyun Back, Chi-Su Kim, Jun-Ha Park, Gun-Hee Ye, Dong-Soo Jang, Wook-Hyun Ha, and Dong-Kweon Hong. "Estimating subway congestion using image processing", Korean Institute of Information Scientists and Engineers, Vol. 2017, No. 12, pp. 533-535, 2017.
- Nasteski, V. "An overview of the supervised machine learning methods", Horizons, Vol. b, No. 4, pp. 51-62, 2017. DOI:10.20544/HORIZONS.B.04.1.17.P05
- S.-B. Jin ,J.-W. Lee, "Study on Accident Prediction Models in Urban Railway Casualty Accidents Using Logistic Regression Analysis Model", Journal of the Korean Society for Railway, Vol. 20, No. 4, pp. 482-490, 2017. DOI: 10.7782/JKSR.2017.20.4.482
- Kazemitabar, J., Amini, A., Bloniarz, A., and Talwalkar, A. S. "Variable importance using decision trees", Advances in neural information processing systems, Vol. 30, 2017.
- J. Hong, S.-J. Jeon, "Prediction of Safety Grade of Bridges Using the Classification Models of Decision Tree and Random Forest" KSCE Journal of Civil and Environmental Engineering Research, Vol. 43, No. 3, pp. 397?411, 2023. DOI:10.12652/Ksce.2023.43.3.0397
- Biau, G.,Scornet, E."A random forest guided tour", Test, Vol. 25, pp. 197-227, 2016. DOI:10.1007/s11749-016-0481-7
- JungIn Seo,JeongHyeon Chang. "Predicting Reports of Theft in Businesses via Machine Learning", International Journal of Advanced Culture Technology(IJACT), Vol. 10, No. 4, pp. 499-510, 2022. DOI:10.17703/IJACT.2022.10.4.499
- Al-Shehari, Taher, Rakan A. Alsowail, "An Insider Data Leakage Detection Using One-Hot Encoding, Synthetic Minority Oversampling and Machine Learning Techniques", Entropy, Vol. 23, No. 10, pp. 1258, 2021. DOI:10.3390/e23101258
- Peshawa J. Muhammad Ali, Rezhna H.Faraj; "Data Normalization and Standardization: A Technical Report, Machine Learning Technical Reports, Vol. 1, No. 1, pp 1-6, 2014. DOI:10.13140/RG.2.2.28948.04489
- Seoul Metro(2021),"The Seoul Transportation Corporation won the '10 Best Technology Awards for Subway Congestion Calculation Service' for Big Data Convergence", https://www.seoul.go.kr/news/news_report.do#view/350703
- Seokjin Im,"An Extended Function Point Model for Estimating the Implementing Cost of Machine Learning Applications."The Journal of the Convergence on Culture Technology, Vol. 9, No. 2, pp. 475?481, 2023. DOI:10.17703/JCCT.2023.9.2.475
- S. Jiang, H. Mao, Z. Ding and Y. Fu, "Deep Decision Tree Transfer Boosting", IEEE Transactions on Neural Networks and Learning Systems, Vol. 31, No. 2, pp. 383-395, 2020, DOI: 10.1109/TNNLS.2019.2901273
- Garibay, Alonso Palomino et al. "A Random-Forest Approach for Authorship Profiling" , Proceedings of CLEF, 2015.
- Meng D, Xu Jun, Zhao J, "Analysis and prediction of hand, foot and mouth disease incidence in China using Random Forest and XGBoost", Plos one, Vol. 16, No. 12, 2021. DOI:10.1371/journal.pone.0261629
- Safavian, S. R., & Landgrebe, D. "A survey of decision tree classifier methodology", IEEE transactions on systems, man, and cybernetics, Vol. 21, No. 3, pp. 660-674, 1991. DOI:10.1109/21.97458