DOI QR코드

DOI QR Code

Subway Line 2 Congestion Prediction During Rush Hour Based on Machine Learning

머신러닝 기반 2호선 출퇴근 시간대 지하철 역사 내 혼잡도 예측

  • 장진영 (서울여자대학교 데이터사이언스학과) ;
  • 김채원 (서울여자대학교 데이터사이언스학과) ;
  • 박민서 (서울여자대학교 데이터사이언스학과)
  • Received : 2023.10.04
  • Accepted : 2023.11.05
  • Published : 2023.11.30

Abstract

The subway is a public transportation that many people use every day. Line 2 especially has the most crowded stations during the day. However, the risk of crush accidents is increasing due to high congestion during rush hour and this reduces the safety and comfort of passengers. Subway congestion prediction is helpful to forestall problems caused by high congestion. Therefore, this study proposes machine learning classification models that predict subway congestion during commuting time. To predict congestion in Line 2 based in machine learning, we investigate variables that affect subway congestion through previous research and collect a dataset of subway congestion on Line 2 during rush hour from PUBLIC DATA PORTAL. The proposed model is expected to establish the subway operation plane to make passengers safe and satisfied.

지하철은 사람들이 일상적으로 이용하는 대중교통으로 자리잡고 있다. 특히 2호선은 지하철 승객이 하루동안 가장 많이 이용하는 역들이 포함되어 있는 호선으로 출퇴근 시간대에는 높은 혼잡도로 인해 압사사고의 위험성이 높아지고 있으며, 이는 지하철을 이용하는 사람들의 안전성과 쾌적함을 저하시킨다. 따라서 지하철 역사 내 혼잡도 예측을 바탕으로 높은 혼잡도로 인해 발생하는 문제를 대비할 필요가 있다. 이를 위해 본 연구에서는 출퇴근 시간대 혼잡 여부를 판별하는 머신러닝 분류 모델을 제안한다. 선행연구를 통해 지하철 혼잡도에 영향을 주는 변수를 파악하고, 공공데이터포털에서 출퇴근 시간대의 2호선 지하철 혼잡도 데이터셋을 수집하여 머신러닝을 기반하여 2호선 지하철 역사 내 혼잡 여부를 예측한다. 본 연구에서 제안하는 출퇴근 시간대 2호선 역사 내 혼잡도 예측 모델은 지하철 이용객의 안전과 만족도를 향상시키기 위한 지하철 운영 계획 수립에 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 서울여자대학교 학술연구비의 지원에 의한 것임 (2023-0226).

References

  1. Futuristic Advanced Transportation Division of Seoul City Transportation Office, 「Seoul Transportation in 2022」,
  2. S.-H. Lee, C.-K. Cheon, B.-D. Jung, B.-Y. Yu, andE.-J. Kim."Study on Methodology for Effect Evaluation of Information Offering to Rail passengers", The Journal of The Korea Institute of Intelligent Transport Systems, Vol. 14, No. 3, pp. 50-62, 2015. DOI:10.12815/kits.2015.14.3.050
  3. Dong-Wook Kim, Un-yong Kim, Jun-Won Lee,"Application of Multiple Regression Analysis to Improve Congestion in Subway Carriages and Design of Optimization Plan", Korean Institute of Industrial Engineers, Vol. 2013, No. 11, pp. 1 441-1448, 2013.
  4. Kim, Jin-Su. "Subway Congestion Prediction and Recommendation System Using Big Data Analysis", Journal of Digital Convergence, Vol. 14, No. 11, pp. 289?295, 2016. DOI:10.14400/JDC. 2016.14.11.289
  5. Mi-Rye Kim, In-Ho Cho."Design of Congestion Standardization System Based on IoT", Journal of the Korea Academia-Industrial Cooperation Society, Vol. 17, No. 5, pp. 74?79, 2016, DOI:10.5762/KAIS.2016.17.5.74
  6. Jung-Hyun Back, Chi-Su Kim, Jun-Ha Park, Gun-Hee Ye, Dong-Soo Jang, Wook-Hyun Ha, and Dong-Kweon Hong. "Estimating subway congestion using image processing", Korean Institute of Information Scientists and Engineers, Vol. 2017, No. 12, pp. 533-535, 2017.
  7. Nasteski, V. "An overview of the supervised machine learning methods", Horizons, Vol. b, No. 4, pp. 51-62, 2017. DOI:10.20544/HORIZONS.B.04.1.17.P05
  8. S.-B. Jin ,J.-W. Lee, "Study on Accident Prediction Models in Urban Railway Casualty Accidents Using Logistic Regression Analysis Model", Journal of the Korean Society for Railway, Vol. 20, No. 4, pp. 482-490, 2017. DOI: 10.7782/JKSR.2017.20.4.482
  9. Kazemitabar, J., Amini, A., Bloniarz, A., and Talwalkar, A. S. "Variable importance using decision trees", Advances in neural information processing systems, Vol. 30, 2017.
  10. J. Hong, S.-J. Jeon, "Prediction of Safety Grade of Bridges Using the Classification Models of Decision Tree and Random Forest" KSCE Journal of Civil and Environmental Engineering Research, Vol. 43, No. 3, pp. 397?411, 2023. DOI:10.12652/Ksce.2023.43.3.0397
  11. Biau, G.,Scornet, E."A random forest guided tour", Test, Vol. 25, pp. 197-227, 2016. DOI:10.1007/s11749-016-0481-7
  12. JungIn Seo,JeongHyeon Chang. "Predicting Reports of Theft in Businesses via Machine Learning", International Journal of Advanced Culture Technology(IJACT), Vol. 10, No. 4, pp. 499-510, 2022. DOI:10.17703/IJACT.2022.10.4.499
  13. Al-Shehari, Taher, Rakan A. Alsowail, "An Insider Data Leakage Detection Using One-Hot Encoding, Synthetic Minority Oversampling and Machine Learning Techniques", Entropy, Vol. 23, No. 10, pp. 1258, 2021. DOI:10.3390/e23101258
  14. Peshawa J. Muhammad Ali, Rezhna H.Faraj; "Data Normalization and Standardization: A Technical Report, Machine Learning Technical Reports, Vol. 1, No. 1, pp 1-6, 2014. DOI:10.13140/RG.2.2.28948.04489
  15. Seoul Metro(2021),"The Seoul Transportation Corporation won the '10 Best Technology Awards for Subway Congestion Calculation Service' for Big Data Convergence", https://www.seoul.go.kr/news/news_report.do#view/350703
  16. Seokjin Im,"An Extended Function Point Model for Estimating the Implementing Cost of Machine Learning Applications."The Journal of the Convergence on Culture Technology, Vol. 9, No. 2, pp. 475?481, 2023. DOI:10.17703/JCCT.2023.9.2.475
  17. S. Jiang, H. Mao, Z. Ding and Y. Fu, "Deep Decision Tree Transfer Boosting", IEEE Transactions on Neural Networks and Learning Systems, Vol. 31, No. 2, pp. 383-395, 2020, DOI: 10.1109/TNNLS.2019.2901273
  18. Garibay, Alonso Palomino et al. "A Random-Forest Approach for Authorship Profiling" , Proceedings of CLEF, 2015.
  19. Meng D, Xu Jun, Zhao J, "Analysis and prediction of hand, foot and mouth disease incidence in China using Random Forest and XGBoost", Plos one, Vol. 16, No. 12, 2021. DOI:10.1371/journal.pone.0261629
  20. Safavian, S. R., & Landgrebe, D. "A survey of decision tree classifier methodology", IEEE transactions on systems, man, and cybernetics, Vol. 21, No. 3, pp. 660-674, 1991. DOI:10.1109/21.97458