DOI QR코드

DOI QR Code

Application of VIIRS land products for agricultural drought monitoring

농업가뭄 모니터링을 위한 VIIRS 센서 지표산출물 적용성 분석

  • Sur, Chanyang (National Agricultural Water Research Center, Hankyong National University) ;
  • Nam, Won-Ho (School of Social Safety and Systems Engineering, Institute of Agricultural Environmental Science, National Agricultural Water Research Center, Hankyong National University)
  • 서찬양 (한경국립대학교 국가농업용수연구센터) ;
  • 남원호 (한경국립대학교 사회안전시스템공학부)
  • Received : 2023.09.07
  • Accepted : 2023.10.19
  • Published : 2023.11.30

Abstract

The Moderate resolution Imaging Spectroradiometer (MODIS) is a multispectral sensor that has been actively researched in various fields using diverse land and atmospheric products. MODIS was first launched over 20 years ago, and the demand for novel sensors that can produce data comparable to that obtained using MODIS has continuously increased. In this study, land products obtained using the Visible Infrared Imaging Radiometer Suite (VIIRS) of the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite launched in 2011 were introduced, including land surface temperature and vegetation indices such as the normalized difference vegetation index and enhanced vegetation index. These land products were compared with existing data obtained using MODIS to verify their local applicability in South Korea. Based on spatiotemporal monitoring of an extreme drought period in South Korea and the application of VIIRS land products, our results indicate that VIIRS can effectively replace MODIS multispectral sensors for agricultural drought monitoring.

다중분광센서인 Moderate resolution Imaging Spectroradiometer (MODIS)는 지표 및 대기 산출물을 통해 다양한 분야에서 활발한 연구가 진행되어 왔다. MODIS는 발사된지 20년이 지났고, 비슷한 특성의 이를 대체할 만한 자료의 필요성이 지속적으로 제기되어 왔다. 본 연구에서는 2011년에 발사된 Suomi National Polar-orbiting Partnership (Suomi NPP) 위성의 Visible Infrared Imaging Radiometer Suite (VIIRS) sensor에서 제공하는 지표 산출물 중 지표면 온도(Land Surface Temperature, LST)와 식생 지수인 정규식생지수(Normalized Differences Vegetation Index, NDVI)를 소개하고, 기존의 MODIS에서 제공되는 자료와의 비교 및 검증을 통해 연구 지역인 남한에서의 지역적인 적용성을 파악하고자 한다. 지표면 온도와 식생 활력은 농업적인 가뭄을 발생시키는 주요한 인자로써, 남한의 극심한 가뭄기간인 2014년과 2015년을 대상으로 가뭄의 시공간적인 변동성을 분석하여, VIIRS 산출물의 활용 가능성을 파악하였다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 가뭄대응 물관리 혁신기술 개발 사업의 지원을 받아 연구되었습니다(202305020001).

References

  1. Arkin, P.A., Smith, T.M., Sapiano, M.R.P., and Janowiak, J. (2010). "The observed sensitivity of the global hydrological cycle to changes in surface temperature." Environmental Research Letters, Vol. 5, No. 3, 035201. 
  2. Das, P., Vamsi, K.S., and Zhenke, Z. (2020). "Decadal variation of the land surface temperatures (LST) and urban heat island (UHI) over Kolkata City projected using MODIS and ERAinterim datasets." Aerosol Science and Engineering, Vol. 4, pp. 200-209.  https://doi.org/10.1007/s41810-020-00067-1
  3. Keshavarz, M.R., Vazifedoust, M., and Alizadeh, A. (2014). "Drought monitoring using a soil wetness deficit index (SWDI) derived from MODIS satellite data." Agricultural Water Management, Vol. 132, pp. 37-45.  https://doi.org/10.1016/j.agwat.2013.10.004
  4. Kogan, F.N. (1997). "Global drought watch from space." Bulletin of the American Meteorological Society, Vol. 78, No. 4, pp. 621-636.  https://doi.org/10.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO;2
  5. Lee, H.J., Nam, W.H., Yoon, D.H., Svoboda, M.D., and Wardlow, B.D. (2021). "Detection of flash drought using evaporative stress index in South Korea." Journal of Korea Water Resources Association, Vol. 54, No. 8, pp. 577-587. 
  6. Li, H., Sun, D., Yu, Y., Wang, H., Liu, Y., Liu, Q., Du, Y., Wang, H., and Cao, B. (2014). "Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China." Remote sensing of Environment, Vol. 142, pp. 111-121.  https://doi.org/10.1016/j.rse.2013.11.014
  7. Liu, T., Yu, L., and Zhang, S. (2019). "Land surface temperature response to irrigated paddy field expansion: A case study of semi-arid western Jilin province, China." Scientific Reports, Vol. 9, 5278. 
  8. Ma, J., Zhou, J., Zhang, X., Li, M., Luo, M., and Huang, Q. (2019). "VIIRS LST product validation based on spatial representativeness evaluation of the ground measurements." IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, pp. 1797-1800. 
  9. Nam, W.H., Tadesse, T., Wardlow, B.D., Hayes, M.J., Svoboda, M.D., Hong, E.M., Pachepsky, Y., and Jang, M.W. (2018). "Developing the vegetation drought response index for South Korea (VegDRI-SKorea) to assess the vegetation condition during drought events." International Journal of Remote Sensing, Vol. 39, No. 5, pp. 1548-1574.  https://doi.org/10.1080/01431161.2017.1407047
  10. Skakun, S., Justice, C.O., Vermote, E., and Roger, J.C. (2018). "Transitioning from MODIS to VIIRS: An analysis of interconsistency of NDVI data sets for agricultural monitoring." International Journal of Remote Sensing, Vol. 39, No. 4, pp. 971-992.  https://doi.org/10.1080/01431161.2017.1395970
  11. Solanky, V., Singh, S., and Katiyar, S.K. (2018). "Land surface temperature estimation using remote sensing data." Water Science and Technology Library, Vol. 81, pp. 343-351.  https://doi.org/10.1007/978-981-10-5801-1_24
  12. Sur, C., Kang, S., Kim, J.S., and Choi, M. (2015). "Remote sensing-based evapotranspiration algorithm: A case study of all sky conditions on a regional scale." GIScience & Remote Sensing, Vol. 52, pp. 627-642.  https://doi.org/10.1080/15481603.2015.1056288
  13. Sur, C., Park, S., Kim, T., and Lee, J.H. (2019). "Remote sensing-based agricultural drought monitoring using hydrometeorological variables." KSCE Journal of Civil Engineering, Vol. 23, pp. 5244-5256.  https://doi.org/10.1007/s12205-019-2242-0
  14. Tomlinson, C.J., Chapman, L., Thornes, J.E., and Baker, C. (2011). "Remote sensing land surface temperature for meteorology and climatology: A review." Meteorological Applications, Vol. 18, pp. 296-306.  https://doi.org/10.1002/met.287
  15. Vicente-Serrano, S.M., Begueria, S., Lopez-Moreno, J.I.A. (2010). "Multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index." Journal of Climate, Vol. 23, pp. 1696-1718.  https://doi.org/10.1175/2009JCLI2909.1
  16. Wang, W., Liang, H., Yang, L., Liu, K., Su, H., and Li, X. (2017). "Analyzing the urban heat island using time series land surface temperature (LST) data." IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, U.S., pp. 5874-5876. 
  17. Yan, Y., Mao, K., Shi, J., Piao, S., Shen, X., Dozier, J., Liu, Y., Ren, H.L., and Baoet, Q. (2020). "Driving forces of land surface temperature anomalous changes in North America in 2002-2018." Scientific Reports, Vol. 10, 6931. 
  18. Yoon, D.H., Nam, W.H., Lee, H.J., Hong, E.M., Feng, S., Wardlow, B.D., Tadesse, T., Svoboda, M.D., Hayes, M.J., and Kim, D.E. (2020). "Agricultural drought assessment in East Asia using satellite-based indices." Remote Sensing, Vol. 12, No. 3, 444. 
  19. Zhang, A., and Jia, G. (2013). "Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data." Remote sensing of Environment, Vol. 134, pp. 12-23.  https://doi.org/10.1016/j.rse.2013.02.023
  20. Zhao, W., He, J., Wu, Y., Xiong, D., Wen, F., and Li, A. (2019). "An analysis of land surface temperature trends in the central Himalayan region based on MODIS products." Remote sensing, Vol. 11, No. 8, 900.