DOI QR코드

DOI QR Code

자연성기반 홍수완충공간 조성에 따른 홍수위 변화 분석

Analysis of Flood Level Changes by Creating Nature-based Flood Buffering Section

  • 류지원 (과학기술연합대학원대학교 건설환경공학) ;
  • 지운 (한국건설기술연구원 수자원하천연구본부.과학기술연합대학원대학교 건설환경공학) ;
  • 김상혁 ((주)이산 수자원부) ;
  • 장은경 (한국건설기술연구원 수자원하천연구본부)
  • Ryu, Jiwon (University of Science and Technology) ;
  • Ji, Un (Korea Institute of Civil Engineering and Building Technology. University of Science and Technology) ;
  • Kim, Sanghyeok (Isan Corporation) ;
  • Jang, Eun-kyung (Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2023.09.12
  • 심사 : 2023.10.04
  • 발행 : 2023.12.01

초록

최근 기후변화로 인한 극한홍수 피해가 급증하고 있어 기존의 홍수관리시설만으로는 홍수피해에 제대로 대응하기 어려운 상황에 직면하고 있다. 이에 본 연구는 이러한 문제에 대처하기 위해 홍수 관리의 자연성 기반 접근 방법 중 하나인 제방 후퇴 및 이설의 효과를 분석하였다. 이를 위해 1차원 수치모델 HEC-RAS를 사용하여 100년 빈도 홍수에 대한 홍수위 및 유속 변화 그리고 최대 홍수위 발생 시점에 대해 분석하였다. 식생 조성 등의 자연성기반 홍수완충공간의 조성 환경 특성을 고려한 조도계수의 선택은 홍수위 변화 분석 결과에 민감하기 때문에 엄격한 기준과 과학적 근거를 기반으로 하였다. 분석결과, 자연기반해법의 홍수완충공간 조성에 따른 홍수위 저감 효과는 상류 구간에서 더 크게 나타났으며, 최대 30 cm의 홍수위가 저감되었다. 일부 홍수터 확장구간에서는 국부적으로 홍수위가 상승하는 현상이 나타나며, 유속 변화는 확장된 통수단면적의 비율에 따라 다양하게 나타났다. 이를 통해 제방 후퇴와 홍수터 확장은 홍수 관리의 효과적인 대안으로 고려될 수 있을 것으로 기대되며, 홍수위 변화, 유속 변화 및 최고 수위 발생 시점에 대한 종합적인 설계가 필요할 것으로 판단된다.

In recent times, the sharp increase in extreme flood damages due to climate change has posed a challenge to effectively address flood-related issues solely relying on conventional flood management infrastructure. In response to this problem, this study aims to consider the effectiveness of nature-based flood management approaches, specifically levee retreat and relocation. To achieve this, we utilized a 1D numerical model, HEC-RAS, to analyze the flood reduction effects concerning floodwater levels, flow velocities, and time-dependent responses to a 100-year frequency flood event. The analysis results revealed that the effect of creating a flood buffer zone of the nature-based solution extends from upstream to downstream, reducing flood water levels by up to 30 cm. The selection of the flow roughness coefficient in consideration of the nature-based flood buffer space creation characteristics should be based on precise criteria and scientific evidence because it is sensitive to the flood control effect analysis results. Notably, floodwater levels increased in some expanded floodplain sections, and the reduction in flow velocities varied depending on the ratio of the expanded cross-sectional area. In conclusion, levee retreat and floodplain expansion are viable nature-based alternatives for effective flood management. However, a comprehensive design approach is essential considering flood control effects, flow velocity reduction, and the timing of peak water levels. This study offers insights into addressing the challenges of climate-induced extreme flooding and advancing flood management strategies.

키워드

과제정보

Research for this paper was carried out under the KICT Research Program (project no. 20230115-001, Development of IWRM-Korea Technical Convergence Platform Based on Digital New Deal) funded by the Ministry of Science and ICT.

참고문헌

  1. Baptist, M. J., Babovic, V., Rodriguez Uthurburu, J., Keijzer, M., Uittenbogaard, R. E., Mynett, A. and Verwey, A. (2007). "On inducing equations for vegetation resistance." Journal of Hydraulic Research, Taylor & Francis, Vol. 45, No. 4, pp. 435-450, https://doi.org/10.1080/00221686.2007.9521778. 
  2. Brunner, G. W. (2016). HEC-RAS River Analysis System: Hydraulic Reference Manual, Version 5.0. CPD-69, US Army Corps of Engineers-Hydrologic Engineering Center, CA, USA. 
  3. Collenteur, R. A., de Moel, H., Jongman, B. and Di Baldassarre, G. (2015). "The failed-levee effect: Do societies learn from flood disasters?." Natural Hazards, Springer, Vol. 76, pp. 373-388, https://doi.org/10.1007/s11069-014-1496-6. 
  4. Dierauer, J., Pinter, N. and Remo, J. W. F. (2012). "Evaluation of levee setbacks for flood-loss reduction, Middle Mississippi River, USA." Journal of Hydrology, Elsevier, Vols. 450-451, pp. 1-8, https://doi.org/10.1016/j.jhydrol.2012.05.044. 
  5. Hipple, J. D., Drazkowski, B. and Thorsell, P. M. (2005). "Development in the Upper Mississippi Basin: 10 years after the Great Flood of 1993." Landscape and Urban Planning, Elsevier, Vol. 72, No. 4, pp. 313-323, https://doi.org/10.1016/j.landurbplan.2004.03.012. 
  6. Inergovernmental Panel on Climate Change (IPCC) (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability, Intergovernmental Panel on Climate Change, Cambridge, UK and New York, NY, USA. https://doi.org/10.1017/CBO9781107415379. 
  7. Jadhav, R. and Kumar, M. (2021). Heavy rain in India triggers floods, landslides; at least 125 dead, REUTERS, Available at: https://www.reuters.com/world/india/heavy-rain-india-triggersfloods-landslides-least-125-dead-2021-07-24/ (Accessed: July 24, 2021). 
  8. Ji, U., Jang, E. K., Bae, I., Ahn, M. and Bae, J. (2022). "A study on the site selection method for the creation of a flood buffer section considering the nature-based solution-case study from upstream of Daecheong Dam to Downstream of Yongdam Dam." Ecology and Resilient Infrastructure, KSEIE, Vol. 9, No. 3, pp. 131-140, https://doi.org/10.17820/eri.2022.9.3.131 (in Korean). 
  9. Ji, U., Jarvela, J., Vastila, K. and Bae, I. (2023). "Experimentation and modeling of reach-scale vegetative flow resistance due to willow patches." Journal of Hydraulic Engineering, ASCE, Vol. 149, No. 7, 04023018, https://doi.org/10.1061/JHEND8.HYENG-13293. 
  10. Jun, K., Kim, J., Kim, W. and Yoon, B. (2010). "Computational model for flow in river systems including storage pockets with side weirs." Journal of Korea Water Resources Association, KWRA, Vol. 43, No. 2, pp. 139-151 (in Korean).  https://doi.org/10.3741/JKWRA.2010.43.2.139
  11. Kim, S., Kim, S., Yoon, B. and Ji, U. (2012). "Development and accuracy analysis of the discharge-supply system to generate hydrographs for unsteady flow in the open channel." Journal of Korea Water Resources Association, KWRA, Vol. 45, No. 8, pp. 783-794 (in Korean).  https://doi.org/10.3741/JKWRA.2012.45.8.783
  12. Kim, S., Yoon, B., Kim, D. and Kim, S. (2016). "Accuracy analysis of HEC-RAS for unsteady flow simulation considering the flow pattern variations over the side-weir of side-weir detention basin." Journal of Korea Water Resources Association, KWRA, Vol. 49, No. 1, pp. 29-39 (in Kroean).  https://doi.org/10.3741/JKWRA.2016.49.1.29
  13. Knox, R. L., Wohl, E. E. and Morrison, R. R. (2022). "Levees don't protect, they disconnect: A critical review of how artificial levees impact floodplain functions." Science of the Total Environment, Elsevier, Vol. 837, 155773, https://doi.org/10.1016/j.scitotenv.2022.155773. 
  14. Korea Institute of Civil Engineering and Building Technology (KICT) (2021). Fundamental Investigation Study on Floodplains to Improve Water Environment of Daecheong Dam - Establishment of the floodplain restoration plans of nature-based solutions linking the Geum River's riparian section and stream channel. Final Report for 2021 Geum River Watershed Environmental Basic Investigation Project, Geum River Watershed Management Committee, Daejeon (in Korean). 
  15. Kwak, J. W., Kim, D. G., Yin, S. H. and Kim, H. S. (2008). "Washland constructions and effectiveness analysis of flood control using MD-FDA." Journal of Wetlands Research, KWS, Vol. 10, No. 3, pp. 69-78 (in Korean). 
  16. Ministry of Environment (MOE) (2020). Basic plan for management for the waterfront area in Geumgang watershed (in Korean). 
  17. Ministry of Environment (MOE). (2022). Development of Flood Damage Reduction and Buffering Metrology using Nature-based Solutions (in Korean). 
  18. Ministry of Land, Infrastructure and Transport (MOLIT) (2005). A study on the establishment of a basic plan for riverside reservoirs (in Korean). 
  19. Park, C. K., Park, J. H. and Lee, J. J. (2007). "Analysis for Flood control in Hwapocheon watershed using WashLand." Proceedings of the Korea Water Resources Association Conference, KWRA, Pyeongchang, Korea, pp. 331-335 (in Korean). 
  20. Pinter, N., van der Ploeg, R. R., Schweigert, P. and Hoefer, G. (2006). "Flood magnification on the River Rhine." Hydrological Processes, John Wiley & Sons, Vol. 20, No. 1, pp. 147-164, https://doi.org/10.1002/hyp.5908. 
  21. Rhee, D. S., Kim, H. J. and Cho, G. (2014). "Analysis of flood level mitigation due to the Naju retention-basin by numerical model application." Journal of the Korea Academia-Industrial Cooperation Society, KAIS, Vol. 15, No. 9, pp. 5801-5812, https://doi.org/10.5762/KAIS.2014.15.9.5801 (in Korean). 
  22. Room for the River (2013). Brochure, Available at: http://issuu. com/ruimtevoorderivier/docs/rvdr_corp_brochure_eng__def (Accessed: April 25, 2023). 
  23. Seong, H. J., Park, I. and Rhee, D. S. (2018). "Effects of the water level reduction and the flow distribution according to change of the side weir location in detention reservoir." Journal of Korea Water Resources Association, KWRA, Vol. 51, No. 7, pp. 555-564, https://doi.org/10.3741/JKWRA.2018.51.7.555 (in Korean). 
  24. Shin, S. B., Park, J., Song, J. H. and Kang, M. S. (2017). "Flood stage analysis considering the uncertainty of roughness coefficients and discharge for Cheongmicheon watershed." Journal of Korea Water Resources Association, KWRA, Vol. 50, No. 10, pp. 661-671 (in Korean).  https://doi.org/10.3741/JKWRA.2017.50.10.661
  25. Woo, H. (2020). "River levee failures due to the floods in August 2020 and their implications." KSCE Magazine, KSCE, Vol. 68, No. 12, pp. 78-85 (in Korean).