DOI QR코드

DOI QR Code

비용-편익을 고려한 홍수 대응 정책의 유출 저감 효과 분석

Analysis of Runoff Reduction Effect of Flood Mitigation Policies based on Cost-Benefit Perspective

  • 지희원 (서울시립대학교 도시과학연구원) ;
  • 김현주 (서울대학교 건설환경공학부) ;
  • 서승범 (서울시립대학교 국제도시과학대학원)
  • 투고 : 2023.07.14
  • 심사 : 2023.09.18
  • 발행 : 2023.12.01

초록

기후변화로 인하여 도시에서 발생하는 집중호우가 증가함에 따라 정부와 지자제는 기후변화 적응대책을 통해 홍수로 인한 피해를 저감시키고자 노력하고 있다. 도시 유역 침수 피해의 감소를 위해 우수관거 용량 증대와 물순환 개선을 통한 지속가능한 치수 정책인 저영향 개발 기법 등 다양한 홍수 대응 정책들이 제시되고 있다. 이러한 정책들을 이행하는데 있어 지역별 특성을 고려한 대책 수립이 필요하며, 이를 위해선 홍수 저감 효과를 비용-편익 측면에서 분석하여 국가 예산을 효율적으로 사용하여야 한다. 본 연구에서는 침수 피해 위험이 있는 도시 소유역에 적용할 수 있는 대응 정책으로 우수관거의 용량 증대와 저영향개발 기법 중 옥상녹화와 투수성 포장 기법을 선정하고 서울대학교 관악캠퍼스 유역의 홍수 저감 효과를 도시유출해석모형인 SWMM 모형으로 분석하였다. 또한, 정책별 공사 및 운영 비용을 계산하고 월류량 감소를 편익으로 고려한 비용-편익 분석을 수행하였다. 분석 결과, 투수성 포장과 우수관거 용량 확대 정책을 100% 반영하는 정책 시나리오가 유출 저감 측면에서 비용 대비 효과가 가장 우수한 시나리오로 분석되었다. 본 연구를 통해 제안된 방법론은 지역별 맞춤형 치수 계획 수립 단계에서 의사 결정을 위한 자료로 높은 활용성을 보일 수 있을 것으로 기대된다.

As the frequency of extreme rainfall events increase due to climate change, climate change adaptation measures have been proposed by the central and local governments. In order to reduce flood damage in urban areas, various flood response policies, such as low impact development techniques and enhancement of the capacity of rainwater drainage networks, have been proposed. When these policies are established, regional characteristics and policy-effectiveness from the cost-benefit perspective must be considered for the flood mitigation measures. In this study, capacity enhancement of rainwater pipe networks and low impact development techniques including green roof and permeable pavement techniques are selected. And the flood reduction effect of the target watershed, Gwanak campus of Seoul National University, was analyzed using SWMM model which is an urban runoff simulation model. In addition, along with the quantified urban flooding reduction outputs, construction and operation costs for various policy scenarios were calculated so that cost-benefit analyses were conducted to analyze the effectiveness of the applied policy scenarios. As a result of cost-benefit analysis, a policy that adopts both permeable pavement and rainwater pipe expansion was selected as the best cost-effective scenario for flood mitigation. The research methodology, proposed in this study, is expected to be utilized for decision-making in the planning stage for flood mitigation measures for each region.

키워드

과제정보

This work was supported by the 2022 Research Fund of the University of Seoul.

참고문헌

  1. Alves, A., Gersonius, B., Kapelan, Z., Vojinovic, Z. and Sanchez, A. (2019). "Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management." Journal of Environmental Management, Elsevier, Vol. 239, pp. 244-254, https://doi.org/10.1016/j.jenvman.2019.03.036. 
  2. Bae, K., Ahn, J., Choi, Y., Kim, B. and Yi, K. (2019). "Analysis of the improved drainage capacity of urban basins at an LID facility." Journal of the Korean Society of Hazard Mitigation, KOSHAM, Vol. 19, No. 1, pp. 311-322, https://doi.org/10.9798/KOSHAM.2019.19.1.311 (in Korean). 
  3. Baek, J., Lee, S., Shin, H. and Kim, H. (2018). "Analysis of effectiveness for water cycle and cost-benefit according to LID application method in environmentally-friendly village." Journal of Korean Society on Water Environment, KSWE, Vol. 34, No. 1, pp. 57-66, https://doi.org/10.15681/KSWE.2017.34.1.57 (in Korean). 
  4. Chae, Y., Park, J., Choi, Y., Kim, D., Yang, Y., Kim, H., Seo, S. and Seong, J. (2020). Building and assessing adaptive capacity to climate change for the national risk management: Economic analysis of the extreme climate risks, Korea Environment Institute (in Korean). 
  5. Chae, Y., Park, J., Choi, Y., Yang, Y., Kim, H., Seo, S., Seong, J. and Cho, J. (2021). Building and assessing adaptive capacity to climate change for the national risk management: Economic analysis of the extreme climate risks, Korea Environment Institute (in Korean). 
  6. Chui, T. F. M., Liu, X. and Zhan, W. (2016). "Assessing cost-effectiveness of specific LID practice designs in response to large storm events." Journal of Hydrology, Elsevier, Vol. 533, pp. 353-364, https://doi.org/10.1016/j.jhydrol.2015.12.011. 
  7. Government of Korea (2020a). The 1st master plan for national water management (2021-2030) (in Korean). 
  8. Government of Korea (2020b). The 3rd national climate change adaptation plan (2021-2025) (in Korean). 
  9. Han, M. Y., Kum, S. Y., Mun, J. S. and Kwak, D. G. (2012). "The effect of decentralized rainwater tank system on the reduction of peak runoff-A case study at M village." Journal of Korea Water Resources Association, KWRA, Vol. 45, No. 1, pp. 65-73, https://doi.org/10.3741/JKWRA.2012.45.1.65 (in Korean). 
  10. Hu, M., Sayama, T., Zhang, X., Tanaka, K., Takara, K. and Yang, H. (2017). "Evaluation of low impact development approach for mitigating flood inundation at a watershed scale in China." Journal of Environmental Management, Elsevier, Vol. 193, pp. 430-438, https://doi.org/10.1016/j.jenvman.2017.02.020. 
  11. Joo, H. J., Kim, S. J., Lee, M. J. and Kim, H. S. (2018). "A study on determination of investment priority of flood control considering flood vulnerability." Journal of the Korean Society of Hazard Mitigation, KOSHAM, Vol. 18, No. 2, pp. 417-429, https://doi.org/10.9798/KOSHAM.2018.18.2.417 (in Korean). 
  12. Jung, J.-S., Park, Y.-B. and Sohn, J.-R. (2014). "A case study of life cycle cost analysis on pavements in apartment complex." LHI Journal of Land, Housing, and Urban Affairs, LHRI, Vol. 5, No. 4, pp. 297-303, https://doi.org/10.5804/LHIJ.2014.5.4.297 (in Korean). 
  13. Kim, H. and Kim, G. (2021). "An effectiveness study on the use of different types of LID for water cycle recovery in a small catchment." Land, MDPI, Vol. 10, No. 10, 1055, https://doi.org/10.3390/land10101055. 
  14. Kim, H. and Kim, Y.-O. (2022). "A study on changes in water cycle characteristics of university campus catchment: focusing on potential evapotranspiration improvement in Mt. Gwanak catchment." Journal of Korea Water Resources Association, KWRA, Vol. 55, No. 12, pp. 1077-1089, https://doi.org/10.3741/JKWRA.2022.55.12.1077 (in Korean). 
  15. Kim, D., Kim, Y.-O., Jee, H. W. and Kang, T. H. (2020). "Development of index for flood risk assessment on national scale and future outlook." Journal of Korean Water Resources Association, KWRA, Vol. 53, No. 5, pp. 323-336, https://doi.org/10.3741/JKWRA.2020.53.5.323 (in Korean). 
  16. Korea Development Institute (2008). A study on modifications of preliminary feasibility analysis standard guideline (4th Edition) (in Korean). 
  17. Kourtis, I. M., Tsihrintzis, V. A. and Baltas, E. (2020). "A robust approach for comparing conventional and sustainable flood mitigation measures in urban basins." Journal of Environmental Management, Elsevier, Vol. 269, 110822, https://doi.org/10.1016/j.jenvman.2020.110822. 
  18. Lee, J. S. and Choi, H. I. (2016). "Flood vulnerability index estimated by comparing analysis methods of flood damage data." Journal of Korean Society of Hazard Mitigation, KOSHAM, Vol. 16, No. 2, pp. 427-435, https://doi.org/10.9798/KOSHAM.2016.16.2.427 (in Korean). 
  19. Lee, S. H., Kim, J. S. and Kim, S. J. (2021). "Analysis of applicability of the detention in trunk sewer for reducing urban inundation." Korean Society of Ecology and Infrastructure Engineering, KSEIE, Vol. 8, No. 1, pp. 44-53, https://doi.org/10.17820/eri.2021.8.1.44 (in Korean). 
  20. Lewis, A. R. and Michelle, A. S. (2022). Storm Water Management Model user's manual version 5.2, U.S. Environmental Protection Agency, Ohio, USA. 
  21. Mei, C., Liu, J., Wang, H., Yang, Z., Ding, X. and Shao, W. (2018). "Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed." Science of the Total Environment, Elsevier, Vol. 639, pp. 1394-1407, https://doi.org/10.1016/j.scitotenv.2018.05.199. 
  22. Ministry of Environment (2016). Guideline of design of low impact development (in Korean). 
  23. Ministry of Environment (2018a). Operational guidelines for grant allocation and execution management in the sewerage sector (in Korean). 
  24. Ministry of Environment (2018b). A study on evaluation of the adequacy (focused on the economic evaluation) in small-scale sewage treatment plants planning (2nd edition) (in Korean). 
  25. Ministry of Environment (2022). Sewerage design standard (in Korean). 
  26. Ministry of Land, Transport and Maritime Affairs (2008). Life Cycle Cost (LCC) analysis and evaluation guidelines (in Korean). 
  27. Ministry of the Interior and Safety (2022). Allocation of 790.5 billion won for recovery funds for August rainfall-induced flooding damage in Seoul and Gyeonggi, Ministry of Culture, Sports and Tourism, Available at: https://www.korea.kr/news/policyNewsView.do?newsId=148905747 (Accessed: September 19, 2023) (in Korean). 
  28. National Assembly Research Service (2020). Urban flood management strategies for response to climate change, Nars Brief, Vol. 62 (in Korean). 
  29. Park, J. (2015). Hydro circulation design proposal considering water cycle soundness on uppermost stream basin - Focused on Seoul National University in Gwanak district, South Korea, Msc. Dissertation, Seoul National University, Seoul, Republic of Korea (in Korean). 
  30. Park, J. H., Kim, S. H. and Bae, D. H. (2019). "Evaluating appropriateness of the design methodology for urban sewer system." Journal of Korean Water Resources Association, KWRA, Vol. 52, No. 6, pp. 411-420, https://doi.org/10.3741/JKWRA.2019.52.6.411 (in Korean). 
  31. Ryu, J. and Kang, H. S. (2020). Policy research roadmap for desirable integrated water management, Korea Environment Institute, Research Reports 2023-03-01 (in Korean). 
  32. Shin, D. S., Park, J. B., Kang, D. K. and Jo, D. J. (2013). "An analysis of runoff mitigation effect Using SWMM-LID model for frequently inundated basin." Journal of the Korean Society of Hazard Mitigation, KOSHAM, Vol. 13, No. 4, pp. 303-309 (in Korean)  https://doi.org/10.9798/KOSHAM.2013.13.4.303
  33. Sobieraj, J., Bryx, M. and Metelski, D. (2020). "Stormwater management in the city of Warsaw: A review and evaluation of technical solutions and strategies to improve the capacity of the combined sewer system." Water, MDPI, Vol. 14, No. 13, https://doi.org/10.3390/w14132109. 
  34. Sui, X. and van de Ven, F. (2022). "The influence of Low Impact Development (LID) on basin runoff in a half-urbanized catchment: A case study in San Antonio, Texas." Journal of Hydrology, Elsevier, Vol. 616, 128793, https://doi.org/10.1016/j.jhydrol.2022.128793. 
  35. Yeo, K. and Jung, Y. (2013). "An analysis of effect of green roofs in urbanized areas on runoff alleviation and cost estimation." Seoul Studies, The Seoul Institute, Vol. 14, No. 2, pp. 161-177, https://doi.org/10.23129/seouls.14.2.201306.161 (in Korean). 
  36. Yoon, E. H., Jang, C. L. and Lee, K. S. (2020). "Runoff analysis according to LID facilities in climate change scenario - Focusing on Cheonggyecheon basin." Journal of Korea Water Resources Association, KWRA, Vol. 53, No. 8, pp. 583-595, https://doi.org/10.3741/JKWRA.2020.53.8.583 (in Korean).