DOI QR코드

DOI QR Code

Agarwood's Domestic and International Research Trends and Literature Review of Herbal Medicine

침향(沈香)의 국내외 연구동향과 본초학에 대한 문헌고찰

  • Kwang Ho Jung (IAA (International Agarwood Association) Research Center) ;
  • Woojin Cho (IAA (International Agarwood Association) Research Center)
  • 정광호 (IAA국제침향협회 연구소) ;
  • 조우진 (IAA국제침향협회 연구소)
  • Received : 2023.10.11
  • Accepted : 2023.11.25
  • Published : 2023.11.30

Abstract

Objectives : To investigate the modern research achievements of agarwood and its association with the efficacy of herbal medicine based on the in vivo and in vitro activities of volatile compounds detected in agarwood. Methods : Databases such as PubMed and ScienceOn were searched for medicinal in vivo and in vitro activity studies on agarwood. They were categorized into "medicine and pharmacy" and "others not related to medicine and pharmacy," and the studies on medicine and pharmacy were organized according to active efficacy. The efficacy and virtue of agarwood as identified in the book (or herbal medicine/herbology) corresponded to modern medical terms and diseases in reference to the . Separately, the Gas Chromatography & Mass spectrometer (GC-MS) analysis results of agarwood from a total of 5 production areas of Aquilaria crassna from Vietnam, Indonesia, Malaysia, Myanmar, and Cambodia as identified in previous studies were consulted to search for research papers on the medicinal activity of the 13 compounds of the aromatic sesquiterpene family detected in agarwood, and they were categorized according to topic. Results : There were 123 studies on the medicinal activity of agarwood. Overall, 46 studies on single extracts of agarwood reported activities such as improving mental health, including anti-anxiety and stability, and antiallergic, antioxidant, antibacterial, and digestive system protective effects. In total, 59 papers on the activities of single compounds isolated from agarwood reported anti-inflammatory and mental health benefits. Separately, 13 compounds detected in agarwood, such as α-agarofuran and β-caryophyllene, were reported by 110 studies to have anticancer, stabilizing, antibacterial, and anti-inflammatory activities. There were also papers on the cultivation methods and resin formation conditions of agarwood trees unrelated to the efficacy of herbal medicine. Conclusion : Among the pharmacological papers, a total of 57 papers corresponded to the effects of agarwood in traditional herbal medicine, including 33 papers related to agarwood extracts and 24 papers analyzing 8 types of sesquiterpenes, such as β-caryophyllene and cedrol, from previous studies. Based on the research findings of each paper, it was possible to correlate the effects of agarwood in traditional herbal medicine with the achievements of modern pharmacological research. In addition, further research is anticipated in new areas related to traditional herbal medicine, including the improvement of mental health such as anti-depression, as well as activities related to anticancer, antioxidant, and hair growth.

Keywords

References

  1. Lee SY, Mohamed R. The origin and domestication of Aquilaria, an important agarwood-producing genus. Agarwood: science behind the fragrance. 2016 : 1-20. doi:10.1007/978-981-10-0833-7_1 
  2. Lopez-Sampson A, Page, T. History of use and trade of agarwood. Economic botany. 2018 ; 72(1) : 107-29. doi:10.1007/s12231-018-9408-4 
  3. Alam J, Mujahid M, Rahman MA, Akhtar J, Khalid M, Jahan Y, et al. An insight of pharmacognostic study and phytopharmacology of Aquilaria agallocha. Journal of Applied Pharmaceutical Science. 2015 ; 5(8) : 173-81. doi:10.7324/JAPS.2015.50827 
  4. Hashim YZ, Kerr PG, Abbas P, Salleh HM. Aquilaria spp.(agarwood) as source of health beneficial compounds: A review of traditional use, phytochemistry and pharmacology. Journal of Ethnopharmacology. 2016 ; 189 : 331-60. doi:10.1016/j.jep.2016.06.055 
  5. Boncho-hak. Seoul : Young-Lim Press. 2020 : 392. 
  6. Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules. 2016 ; 21(5). doi:10.3390/molecules21050559 
  7. Park S, Kim H. Study on marker component and skin efficacy of Aquilaria Malaccensis agarwood extract. Jounal of The Korean Society of cosmetology. 2019 ; 25(3) : 685-93. 
  8. Lee HY, Lee IC, Kwak JH, Kim TH. Evaluation of free radical scavenging and pancreatic lipase inhibitory effects of Aquilaria agallocha extracts. Korean Journal of Food Preservation. 2015 ; 22(3) : 437-42. doi:10.11002/kjfp.2015.22.3.437 
  9. Shin KH, Choi KY, Cho SY, Ahn DK, Park SK. GC-MS Analysis of chemical constituents from various agarwood. The Korea Journal of Herbology. 2011 ; 26(1) : 7-12. doi:10.6116/kjh.2011.26.1.007 
  10. Park HD, Weon HW. The effect of agarwood inhalation using an electric incense burner on stress and brain waves. Journal of the Korea Academia-Industrial cooperation Society. 2021 ; 22(3) : 536-45. doi:10.5762/kais.2021.22.3.536 
  11. Jung KH, Lee KJ. A comparative analysis of the volatile components of agarwood from Vietnam and other regions. Asian Journal of Beauty and Cosmetology. 2022 ; 20(4) : 481-98. doi:10.20402/ajbc.2022.0076 
  12. Ahn S, Ma CT, Choi JM, An S, Lee M, Le THV, et al. Adiponectin-secretion-promoting phenylethylchromones from the agarwood of Aquilaria malaccensis. J Nat Prod. 2019 ; 82(2) : 259-64. doi:10.1021/acs.jnatprod.8b00635 
  13. Inoue E, Shimizu Y, Masui R, Tsubonoya T, Hayakawa T, Sudoh K. Agarwood inhibits histamine release from rat mast cells and reduces scratching behavior in mice: Effect of agarwood on histamine release and scratching behavior. J Pharmacopuncture. 2016 ; 19(3) : 239-45. doi:10.3831/KPI.2016.19.025 
  14. Hwang YL, Kim KY, Yu SN, Park KI, Ahn SC. Evaluation of immunomodulatory and biological effects of Aquilaria crassna extracts. The Journal of Herbal Formula Science. 2022 ; 30(4) : 249-57. doi:10.14374/HFS.2022.30.4.249 
  15. Kim YH, Lee EJ, Song BK, Kim HK. Studies on the antiallergic effect of Aquillariae Lignum. Journal of Korean Oriental Medicine. 1997 ; 18(2) : 167-87. 
  16. Kim MS, Hwang HI, Lee YR, Kim HW, Park JK. The effects of Lentinula edodes and Aquilariae agallocha extracts combination on the repair of UVA-damaged DNA and DNCB-induced allergic dermatitis. The Korean Journal of Food And Nutrition. 2015 ; 28(5) : 759-65. doi:10.9799/ksfan.2015.28.5.759 
  17. Kim CK, Jeong SJ, Kim HM. Antiallergic effect of Aquilariae Lignum. Yakhak Hoeji. 1997 ; 41(2) : 255-9. 
  18. Wang CH, Peng DQ, Liu YY, Wu YL, Guo P, Wei JH. Anti-asthmatic effect of agarwood alcohol extract in mice and its mechanism. Zhongguo Zhong Yao Za Zhi. 2021 ; 46(16) : 4214-21. doi:10.19540/j.cnki.cjcmm.20210520.704 
  19. Alamil JMR, Xenaki D, Manandhar B, Paudel KR, Hansbro PM, Oliver BG, et al. Agarwood oil nanoemulsion attenuates production of lipopolysaccharide (LPS)-induced proinflammatory cytokines, IL-6 and IL-8 in human bronchial epithelial cells. Experimental and Clinical Sciences. 2023 ; 22 : 681-5. doi:10.17179/excli2023-6282 
  20. Li W, Cai CH, Dong WH, Guo ZK, Wang H, Mei WL, Dai HF. 2-(2-phenylethyl)chromone derivatives from Chinese agarwood induced by artificial holing. Fitoterapia. 2014 ; 98 : 117-23. doi:10.1016/j.fitote.2014.07.011 
  21. Li W, Cai CH, Guo ZK, Wang H, Zuo WJ, Dong WH, et al. Five new eudesmane-type sesquiterpenoids from Chinese agarwood induced by artificial holing. Fitoterapia. 2015 ; 100 : 44-9. doi:10.1016/j.fitote.2014.11.010 
  22. Singh BR, Sinha DK, Or VK, Vadhana P, Bhardwaj M, Saraf A, et al. Antimicrobial activity of agarwood oil against multiple-drug-resistant (MDR) microbes of clinical, food and environmental origin. Curr Drug Discov Technol. 2020 ; 17(3) : 348-56. doi:10.2174/1570163816666190125163536 
  23. Chen H, Yang Y, Xue J, Wei J, Zhang Z, Chen H. Comparison of compositions and antimicrobial activities of essential oils from chemically stimulated agarwood, wild agarwood and healthy Aquilaria sinensis (Lour.) gilg trees. Molecules. 2011 ; 16(6) : 4884-96. doi:10.3390/molecules16064884 
  24. Han JS, Shin, D.H. Antimicrobial activity of Lysimachia clethroides duby extracts on foodborne microorganisms. Korean Journal of Food Science and Technology. 2001 ; 33(6) : 774-83. doi:10.1016/j.phymed.2022.153935 
  25. Xia L, Li W, Wang H, Chen H, Cai C, Yang L, et al. LC-MS guided identification of dimeric 2-(2- phenylethyl)chromones and sesquiterpene-2-(2-phenylethyl)chromone conjugates from agarwood of Aquilaria crassna and their cytotoxicity. Fitoterapia. 2019 ; 138 : 104349. doi:10.1016/j.fitote.2019.104349 
  26. He D, Dong WH, Li W, Yang L, Yuan JZ, Gai CJ, et al. LC-MS-guided isolation of 2-(2-phenylethyl) chromone dimers from red soil agarwood of Aquilaria crassna. Fitoterapia. 2022 ; 158 : 105162. doi:10.1016/j.fitote.2022.105162 
  27. Liu YY, Chen DL, Yu ZX, Can-Hong W, Feng J, Meng Y, Wei JH. New 2-(2-phenylethyl) chromone derivatives from agarwood and their inhibitory effects on tumor cells. Natural product research. 2020 ; 34(12) : 1721-7. doi:10.1080/14786419.2018.1528591 
  28. Zhao YM, Yang L, Kong FD, Dong WH, Li W, Chen HQ, et al. Three new 5,6,7,8-tetrahydro2-(2-phenylethyl)chromones and one new dimeric 2-(2-phenylethyl)chromone from agarwood of Aquilaria crassna Pierre ex Lecomte in Laos. Nat Prod Res. 2021 ; 35(14) : 2295-302. doi:10.1080/14786419.2019.1672066 
  29. Dahham SS, Tabana YM, Iqbal MA, Ahamed MB, Ezzat MO, Majid AS, Majid AM. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene beta-caryophyllene from the essential oil of Aquilaria crassna. Molecules. 2015 ; 20(7) : 11808-29. doi:10.3390/molecules200711808 
  30. Chen L, Liu Y, Li Y, Yin W, Cheng Y. Anti-cancer effect of sesquiterpene and triterpenoids from agarwood of Aquilaria sinensis. Molecules. 2022 ; 27(16) : 5350. doi:10.3390/molecules27165350 
  31. Gunasekera SP, Kinghorn AD, Cordell GA, Farnsworth NR. Plant anticancer agents. XIX Constituents of Aquilaria malaccensis. J Nat Prod. 1981 ; 44(5) : 569-72. doi:10.1021/np50017a010 
  32. Dahham SS, Hassan LE, Ahamed MB, Majid AS, Majid AM, Zulkepli NN. In vivo toxicity and antitumor activity of essential oils extract from agarwood (Aquilaria crassna). BMC Complement Altern Med. 2016 ; 16(1) : 1-11. doi:10.1186/s12906-016-1210-1 
  33. Hashim YZ, Phirdaous A, Azura A. Screening of anticancer activity from agarwood essential oil. Pharmacognosy Res. 2014 ; 6(3) : 191-4. doi:10.4103/0974-8490.132593 
  34. Huang XL, Cai D, Gao P, Wang JG, Cheng YX. Aquilariperoxide A, a sesquiterpene dimer from agarwood of Aquilaria sinensis with dual antitumor and antimalarial effects. J Org Chem. 2023 ; 88(13) : 8352-9. doi:10.1021/acs.joc.3c00372 
  35. Huang XL, Zhou YT, Yan YM, Cheng YX. Sesquiterpenoid-chromone heterohybrids from agarwood of Aquilaria sinensis as potent specific Smad3 phosphorylation inhibitors. The Journal of Organic Chemistry. 2022 ; 87(12) : 7643-8. doi:10.1021/acs.joc.2c00145 
  36. Kim YC, Lee EH, Lee YM, Kim HK, Song BK, Lee EJ, Kim HM. Effect of the aqueous extract of Aquilaria agallocha stems on the immediate hypersensitivity reactions. J Ethnopharmacol. 1997 ; 58(1) : 31-8. doi:10.1016/s0378-8741(97)00075-5 
  37. Wang SL, Tsai YC, Fu SL, Cheng MJ, Chung MI, Chen JJ. 2-(2-Phenylethyl)-4 H-chromen-4-one derivatives from the resinous wood of Aquilaria sinensis with anti-inflammatory effects in LPS-induced macrophages. Molecules. 2018 ; 23(2) : 289. doi:10.3390/molecules23020289 
  38. Huo HX, Gu YF, Sun H, Zhang YF, Liu WJ, Zhu ZX, et al. Anti-inflammatory 2-(2-phenylethyl) chromone derivatives from Chinese agarwood. Fitoterapia. 2017 ; 118 : 49-55. doi:10.1016/j.fitote.2017.02.009 
  39. Yu Z, Wang C, Zheng W, Chen D, Liu Y, Yang Y, Wei J. Anti-inflammatory 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromones from agarwood of Aquilaria sinensis. Bioorg Chem. 2020 ; 99 : 103789. doi:10.1016/j.bioorg.2020.103789 
  40. Yang ZH, Fang HB, Tao CT, Jiao YB, Cheng YX. Eight new 2-(2-phenylethyl)chromone derivatives from agarwood of Aquilaria sinensis with antiinflammatory activity. Fitoterapia. 2023 ; 169 : 105564. doi:10.1016/j.fitote.2023.105564 
  41. Liu YY, Chen DL, Wei JH, Feng J, Zhang Z, Yang Y, Zheng W. Four new 2-(2-Phenylethyl)chromone derivatives from Chinese agarwood produced via the whole-tree agarwood-inducing technique. Molecules. 2016 ; 21(11) : 1433. doi:10.3390/molecules21111433 
  42. Zhu Z, Gu Y, Zhao Y, Song Y, Li J, Tu P. GYF-17, a chloride substituted 2-(2-phenethyl)-chromone, suppresses LPS-induced inflammatory mediator production in RAW264.7 cells by inhibiting STAT1/3 and ERK1/2 signaling pathways. Int Immunopharmacol. 2016 ; 35 : 185-92. doi:10.1016/j.intimp.2016.03.044 
  43. Huo HX, Gu YF, Zhu ZX, Zhang YF, Chen XN, Guan PW, et al. LC-MS-guided isolation of antiinflammatory 2-(2-phenylethyl)chromone dimers from Chinese agarwood (Aquilaria sinensis). Phytochemistry. 2019 ; 158 : 46-55. doi:10.1016/j.phytochem.2018.11.003 
  44. Zhang S, Xie Y, Song L, Wang Y, Qiu H, Yang Y, et al. Seven new 2-(2-phenylethyl) chromone derivatives from agarwood of Aquilaria agallocha with inhibitory effects on nitric oxide production. Fitoterapia. 2022 ; 159 : 105177. doi:10.1016/j.fitote.2022.105177 
  45. Yu ZX, Wang CH, Chen DL, Liu YY, Wei JH. Antiinflammatory sesquiterpenes from agarwood produced via whole-tree agarwood-inducing technique of Aquilaria sinensis. Zhongguo Zhong Yao Za Zhi. 2019 ; 44(19) : 4196-202. doi:10.19540/j.cnki.cjcmm.20190723.201 
  46. Chen Y, Chen N, Wang J, Li S. Effects of Baimuxinol on the inflammation and oxidative stress of LPS-induced RAW264.7 macrophages via regulating the NF-kappaB/IkappaBalpha and Nrf2/ARE signaling pathway. Acta Biochim Pol. 2023 ; 70(1) : 77-82. doi:10.18388/abp.2020_6208 
  47. Xie Y, Song L, Li C, Yang Y, Zhang S, Xu H, et al. Eudesmane-type and agarospirane-type sesquiterpenes from agarwood of Aquilaria agallocha. Phytochemistry. 2021 ; 192 : 112920. doi:10.1016/j.phytochem.2021.112920 
  48. Zhou H, Li XY, Fang HB, Jiang HZ, Cheng YX. Five new sesquiterpenoids from agarwood of Aquilaria sinensis. Beilstein J Org Chem. 2023 ; 19(1) : 998-1007. doi:10.3762/bjoc.19.75 
  49. Ma CT, Ly TL, Le THV, Tran TVA, Kwon SW, Park JH. Sesquiterpene derivatives from the agarwood of Aquilaria malaccensis and their anti-inflammatory effects on NO production of macrophage RAW 264.7 cells. Phytochemistry. 2021 ; 183 : 112630. doi:10.1016/j.phytochem.2020. 112630 
  50. Yuan JZ, Yang YL, Li W, Yang L, Dai HF, Mandi A, et al. Zizaane-type sesquiterpenoids and their rearranged derivatives from agarwood of an Aquilaria plant. Molecules. 2021 ; 27(1) : 198. doi:10.3390/molecules27010198 
  51. Yadav DK, Mudgal V, Agrawal J, Maurya AK, Bawankule DU, Chanotiya CS, et al. Molecular docking and ADME studies of natural compounds of agarwood oil for topical anti-inflammatory activity. Curr Comput Aided Drug Des. 2013 ; 9(3) : 360-70. doi:10.2174/1573409911309030012 
  52. Alamil JMR, Paudel KR, Chan Y, Xenaki D, Panneerselvam J, Singh SK, et al. Rediscovering the therapeutic potential of agarwood in the management of chronic inflammatory Diseases. Molecules. 2022 ; 27(9) : 3038. doi:10.3390/molecules27093038 
  53. Tian CP, Song YL, Xu HT, Niu SQ, Wu ZH, Shen LQ. Composition analysis,antioxidative and antibacterial activities comparison of agarwood oils extracted by supercritical and steam distillation. Zhongguo Zhong Yao Za Zhi. 2019 ; 44(18) : 4000-8. doi:10.19540/j.cnki.cjcmm.20190629.302 
  54. Jung I. Evaluation of β-selinene absorption rate and antioxidant effect of Chimhyang-hwan fermented with lactic acid bacteria. Journal of Industrial Innovation [Internet]. 2023 ; 39(2) : 143-50. doi:10.22793/indinn.2023.39.2.013 
  55. Wang MR, Li W, Luo S, Zhao X, Ma CH, Liu SX. GC-MS Study of the chemical components of different Aquilaria sinensis (Lour.) Gilgorgans and agarwood from different asian countries. Molecules. 2018 ; 23(9) : 2168. doi:10.3390/molecules 23092168
  56. Ma S HM, Fu Y, Qiao M, Li Y. How closely induced agarwood's biological activity resemble that of wild agarwood? Molecules. 2023 ; 28(7) : 2922. doi:10.3390/molecules28072922 
  57. Seo JH, Park DJ, Lee SY, Cho HS, Jin MH. Neuraminidase-inhibition activity of nodakenetin from Gongjin-dan fermented by lactic acid bacteria. Microbiol Biotechnol Lett. 2020 ; 48(3) : 303-9. doi:10.4014/mbl.2001.01015 
  58. Shibata S, Sugiyama T, Uekusa Y, Masui R, Narukawa Y, Kiuchi F. Five new 2-(2-phenylethyl) chromone derivatives from agarwood. J Nat Med. 2020 ; 74(3) : 561-70. doi:10.1007/s11418-020-01410-z 
  59. Sugiyama T, Narukawa Y, Shibata S, Masui R, Kiuchia F. New 2-(2-phenylethyl)chromone derivatives and inhibitors of phosphodiesterase (PDE) 3A from agarwood. Nat Prod Commun. 2016 ; 11(6) : 795-7.  https://doi.org/10.1177/1934578X1601100624
  60. Sugiyama T, Narukawa Y, Shibata S, Masui R, Kiuchi F. Three new 5,6,7,8-tetrahydroxy-5,6, 7,8-tetrahydrochromone derivatives enantiomeric to agarotetrol from agarwood. J Nat Med. 2018 ; 72(3) : 667-74. doi:10.1007/s11418-018-1201-2 
  61. Kuamsub S, Singthong P, Chanthasri W, Chobngam N, Sangkaew W, Hemdecho S, et al. Improved lipid profile associated with daily consumption of Tri-Sura-Phon in healthy overweight volunteers: An open-label, randomized controlled trial. Evid Based Complement Alternat Med. 2017 ; 2017 : 2687173. doi:10.1155/2017/2687173 
  62. Zhang H, Ma JL, Chang C, Ta H, Zhao YF, Shi SP, et al. Gastroprotective 2-(2-phenylethyl) chromone-sesquiterpene hybrids from the resinous wood of Aquilaria sinensis (Lour.) Gilg. Bioorganic Chemistry. 2023 ; 133 : 106396. doi:10.1016/j.bioorg.2023.106396 
  63. Zhou YB. [Pharmacological actions of lignum Aquilariae Resinatum (Aquilaria agallocha Roxb.) on the smooth muscle of intestines]. Zhong Yao Tong Bao. 1988 ; 13(6) : 40-2, 64. 
  64. Ma J, Huo H, Zhang H, Wang L, Meng Y, Jin F, et al. 2-(2-phenylethyl) chromone-enriched extract of the resinous heartwood of Chinese agarwood (Aquilaria sinensis) protects against taurocholic acid-induced gastric epithelial cells apoptosis through Perk/eIF2α/CHOP pathway. Phytomedicine. 2022 ; 98 : 153935. doi:10.1016/j.phymed.2022. 153935 
  65. Wang C, Peng D, Liu Y, Wu Y, Guo P, Wei J. Agarwood alcohol extract protects against gastric ulcer by inhibiting oxidation and inflammation. Evid Based Complement Alternat Med. 2021 ; 2021. doi:10.1155/2021/9944685 
  66. Verkman A, Tradtrantip L, Ko E, Verkman A. Antidiarrheal Efficacy and Cellular Mechanisms of a Thai Herbal Remedy. 2014. doi:10.1371/journal.pntd.0002674 
  67. Li H, Qu Y, Zhang J, Zhang J, Gao W. Spasmolytic activity of Aquilariae Lignum Resinatum extract on gastrointestinal motility involves muscarinic receptors, calcium channels and NO release. PharmBiol. 2018 ; 56(1) : 559-66. doi:10.1080/13880209.2018.1492000 
  68. Liao G, Mei WL, Dong WH, Li W, Wang P, Kong FD, et al. 2-(2-Phenylethyl)chromone derivatives in artificial agarwood from Aquilaria sinensis. Fitoterapia. 2016 ; 110 : 38-43. doi:10.1016/j.fitote.2016.01.011 
  69. Mi CN, Mei WL, Wang H, Yang L, Dong WH, Gai CJ, et al. Four new guaiane sesquiterpenoids from agarwood of Aquilaria filaria. Fitoterapia. 2019 ; 135 : 79-84. doi:10.1016/j.fitote.2019.04.007 
  70. Yang L, Yang YL, Dong WH, Li W, Wang P, Cao X, et al. Sesquiterpenoids and 2-(2-phenylethyl) chromones respectively acting as α-glucosidase and tyrosinase inhibitors from agarwood of an Aquilaria plant. Journal of Enzyme Inhibition and Medicinal Chemistry. 2019 ; 34(1) : 853-62. doi:10.1080/14756366.2019.1576657 
  71. Yang L YY, Dong WH, Li W, Wang P, Cao X, Yuan JZ, Chen HQ, Mei WL, Dai HF. Sesquiterpenoids and 2-(2-phenylethyl)chromones respectively acting as α-glucosidase and tyrosinase inhibitors from agarwood of an Aquilaria plant. J Enzyme Inhib Med Chem 2019 ; 34(1) : 853-62. doi:10.1080/14756366.2019.1576657 
  72. Ji SY, Lee H, Hwangbo H, Kim MY, Kim DH, Park BS, et al. Agarwood pill enhances immune function in cyclophosphamide-induced immunosuppressed mice. Biotechnology and Bioprocess Engineering. 2023 ; 28(1) : 63-73. doi:10.1007/s12257-022-0345-9 
  73. Ji SY, Hwangbo H, Lee H, Koo YT, Kim JS, Lee KW, et al. Immunostimulatory activity of agarwood through activation of MAPK signaling pathway in RAW 264.7 murine macrophages. Journal of Life Science. 2021 ; 31(8) : 745-54. doi:10.5352/JLS.2021.31.8.745 
  74. Guo R, Li J, Gu Y, Li Y, Li S, Gao X, et al. GYF-21, an epoxide 2‑(2‑phenethyl)‑chromone derivative, suppresses dysfunction of B cells mainly via inhibiting BAFF activated signaling pathways. International Immunopharmacology. 2019 ; 67 : 473-82. doi:10.1016/j.intimp.2018. 12.048 
  75. Guo R, Zhao YF, Li J, Gu YF, Huo HX, Li SS, et al. GYF-21, an Epoxide 2-(2-phenethyl)-chromone derivative, suppresses innate and adaptive immunity via inhibiting STAT1/3 and NF-kappaB signaling pathways. Front Pharmacol. 2017 ; 8 : 281. doi:10.3389/fphar.2017.00281 
  76. Zhu Z, Zhao Y, Huo H, Gao X, Zheng J, Li J, Tu P. HHX-5, a derivative of sesquiterpene from Chinese agarwood, suppresses innate and adaptive immunity via inhibiting STAT signaling pathways. Eur J Pharmacol. 2016 ; 791 : 412-23. doi:10.1016/j.ejphar.2016.09.023 
  77. Wang H, Hu J, Hu J, Chen Q, Shang N, Liu M, et al. Antidepressant effect of 4-Butyl-alphaagarofuran via HPA axis and serotonin system. Brain Res Bull. 2023 ; 198 : 3-14. doi:10.1016/j.brainresbull.2023.04.003 
  78. Huong DTL, Dat NT, Van Minh C, Kang JS, Kim YH. Monoamine oxidase inhibitors from Aquilaria agallocha. The Korean Society of Pharmacognosy. 2002 ; 8(1) : 30-3. 
  79. Okugawa H, Ueda R, Matsumoto K, Kawanishi K, Kato A. Effect of jinkoh-eremol and agarospirol from agarwood on the central nervous system in mice. Planta Med. 1996 ; 62(1): 2-6. doi:10.1055/s-2006-957784 
  80. Ueda JY, Imamura L, Tezuka Y, Tran QL, Tsuda M, Kadota S. New sesquiterpene from Vietnamese agarwood and its induction effect on brain-derived neurotrophic factor mRNA expression in vitro. Bioorg Med Chem. 2006 ; 14(10) : 3571-4. doi:10.1016/j.bmc.2006.01.023 
  81. Hu JP, Wang WJ, Chen H, Li YW, Fan JH, Li Y. Pharmacokinetics, tissue distribution, and excretion of buagafuran in rats. J Asian Nat Prod Res. 2011 ; 13(3) : 205-14. doi:10.1080/10286020.2010.550881 
  82. Castro KP, Ito M. Individual and combined inhalational sedative effects in mice of low molecular weight aromatic compounds found in agarwood aroma. Molecules. 2021 ; 26(5) : 1320. doi:10.3390/molecules26051320 
  83. Gong B, Wang CH, Wu YL, Liu YY, Wei JH. Anxiolytic and antidepressant effects of agarwood inhalation and its mechanism. Zhongguo Zhong Yao Za Zhi. 2023 ; 48(4) : 1023-31. doi:10.19540/j.cnki.cjcmm.20221027.401 
  84. Wang S, Wang C, Yu Z, Wu C, Peng D, Liu X, et al. Agarwood essential oil ameliorates restrain stress-induced anxiety and depression by inhibiting HPA axis hyperactivity. Int J Mol Sci. 2018 ; 19(11) : 3468. doi:10.3390/ijms19113468 
  85. Wang S, Wang C, Peng D, Liu X, Wu C, Guo P, Wei J. Agarwood essential oil displays sedativehypnotic effects through the GABAergic system. Molecules. 2017 ; 22(12) : 2190. doi:10.3390/molecules22122190 
  86. Miyoshi T, Ito M, Kitayama T, Isomori S, Yamashita F. Sedative effects of inhaled benzylacetone and structural features contributing to its activity. Biol Pharm Bull. 2013 ; 36(9) : 1474-81. doi:10.1248/bpb.b13-00250 
  87. Wang C, Gong B, Liu Y, Chen D, Wu Y, Wei J. Agarwood essential oil inhalation exerts antianxiety and antidepressant effects via the regulation of Glu/GABA system homeostasis. Biomed Rep. 2023 ; 18(2) : 16. doi:10.3892/br.2023.1598 
  88. Chen X, Wang C, He Q, Feng J, Chen D, Wei J, Liu Y. Chemical composition and potential properties in mental Illness (anxiety, depression and insomnia) of agarwood essential oil : A review. Molecules. 2022 ; 27(14): 4528. doi :10.3390/molecules 27144528 
  89. Dong M, Du H, Li X, Zhang L, Wang X, Wang Z, Jiang H. Discovery of biomarkers and potential mechanisms of agarwood incense smoke intervention by untargeted metabolomics and network pharmacology. Drug Des Devel Ther. 2022 ; 16: 265-78. doi:10.2147/DDDT.S348028 
  90. Wang C, Wang Y, Gong B, Wu Y, Chen X, Liu Y, Wei J. Effective components and molecular mechanismof agarwood essential oil inhalation and the sedative and hypnotic effects based on GC-MS- Qtof and molecular docking. Molecules. 2022 ; 27(11) : 3483. 
  91. Okugawa H, Ueda R, Matsumoto K, Kawanishi K, Kato A. Effects of agarwood extracts on the central nervous system in mice. Planta Med. 1993 ; 59(1) : 32-6. doi:10.1055/s-2006-959599 
  92. Tanaka J, Uchimura N, Hashizume Y, Shirakawa S, Satomura T, Ohyama T, et al. Effects of aroma on sleep and biological rhythms. Psychiatry Clin Neurosci. 2002 ; 56(3) : 299-300. doi:10.1046/j.1440-1819.2002.00984.x 
  93. Kao WY, Hsiang CY, Ho SC, Ho TY, Lee KT. Novel serotonin-boosting effect of incense smoke from Kynam agarwood in mice: The involvement of multiple neuroactive pathways. J Ethnopharmacol. 2021 ; 275 : 114069. doi:10.1016/j.jep.2021.114069
  94. Takemoto H, Ito M, Shiraki T, Yagura T, Honda G. Sedative effects of vapor inhalation of agarwood oil and spikenard extract and identification of their active components. Journal of natural medicines. 2008 ; 62 : 41-6. doi:10.1007/s11418-007-0177-0
  95. Lai Y, Hua L, Yang J, Xu J, Chen J, Zhang S, et al. The effect of Chinese agarwood essential oil with cyclodextrin inclusion against PCPA-induced insomnia rats. Molecules. 2023 ; 28(2) : 635. doi:10.3390/molecules28020635 
  96. Park H, Weon H. The effect of agarwood inhalation on adults stress and brain-waves. Journal of Wellness. 2022 ; 17(2) : 205-14. doi:10.21097/ksw.2022.5.17.2.205 
  97. Kankaynar M, Ceyhun HA, Baran A, Sulukan E, Yildirim S, Bolat I, et al. The anxiolytic and circadian regulatory effect of agarwood water extract and its effects on the next generation; zebrafish modelling. Comp Biochem Physiol C Toxicol Pharmacol. 2023 ; 269 : 109621. doi:10.1016/j.cbpc. 2023.109621 
  98. Wang C, Wang S, Peng D, Yu Z, Guo P, Wei J. Agarwood extract mitigates intestinal injury in Fluorouracil-induced mice. Biol Pharm Bull. 2019 ; 42(7) : 1112-9. doi:10.1248/bpb.b18-00805 
  99. Zheng H, Gao J, Man S, Zhang J, Jin Z, Gao W. The protective effects of Aquilariae Lignum Resinatum extract on 5-Fuorouracil-induced intestinal mucositis in mice. Phytomedicine. 2019 ; 54 : 308-17. doi:10.1016/j.phymed.2018.07.006 
  100. Yang DL, Mei WL, Zeng YB, Guo ZK, Zhao YX, Wang H, et al. 2-(2-phenylethyl)chromone derivatives in Chinese agarwood "Qi-Nan" from Aquilaria sinensis. Planta Med. 2013 ; 79(14) : 1329-34. doi:10.1055/s-0033-1350647 
  101. Liao G, Mei WL, Kong FD, Li W, Yuan JZ, Dai HF. 5, 6, 7, 8-Tetrahydro-2-(2-phenylethyl) chromones from artificial agarwood of Aquilaria sinensis and their inhibitory activity against acetylcholinesterase. Phytochemistry. 2017 ; 139 : 98-108. doi:10.1016/j.phytochem.2017.04.011 
  102. Yang DL, Wang H, Guo ZK, Dong WH, Mei WL, Dai HF. A new 2-(2-phenylethyl) chromone derivative in Chinese agarwood 'Qi-Nan' from Aquilaria sinensis. Journal of Asian natural products research. 2014 ; 16(7) : 770-6. doi:10.1080/10286020.2014.896342 
  103. Yang Y, Chen HQ, Kong FD, Zhou LM, Li W, Dong WH, et al. Dimeric sesquiterpenoid-4H-chromone derivatives from agarwood of Aquilaria crassna and their cytotoxicity. Phytochemistry. 2018 ; 145 : 207-13. doi:10.1016/j.phytochem.2017.08.007 
  104. Yang Y, Mei WL, Kong FD, Chen HQ, Li W, Chen ZB, Dai HF. Four new bi-2-(2-phenylethyl) chromone derivatives of agarwood from Aquilaria crassna. Fitoterapia. 2017 ; 119 : 20-5. doi:10.1016/j.fitote.2017.03.008 
  105. Xiang P, Mei W, Chen H, Kong F, Wang H, Liao G, et al. Four new bi-phenylethylchromones from artificial agarwood. Fitoterapia. 2017 ; 120 : 61-6. doi:10.1016/j.fitote.2017.05.012 
  106. Xiang P, Dong WH, Cai CH, Li W, Zhou LM, Dai HF, et al. Three new dimeric 2-(2-phenylethyl) chromones from artificial agarwood of Aquilaria sinensis. Nat Prod Res. 2021 ; 35(21) : 3592-8. doi:10.1080/14786419.2020.1716345 
  107. Wang HN, Mei WL, Dong WH, Kong FD, Li W, Yuan JZ, Dai HF. Two new 2-(2-Hydroxy-2- phenylethyl)chromens from agarwood originating from Aquilaria crassna. J Asian Nat Prod Res. 2018 ; 20(2) : 122-7. doi:10.1080/10286020.2017.1379998 
  108. Kuang T, Chen HQ, Wang H, Kong FD, Cai CH, Dong WH, et al. UPLC-MS-guided isolation of single ether linkage dimeric 2-(2-phenylethyl) chromones from Aquilaria sinensis. RSC Adv. 2019 ; 9(30) : 17025-34. doi:10.1039/c9ra02597a 
  109. Li W, Yang YL, Yang L, Wang H, Dong WH, Cai CH, et al. New sesquiterpenoids bearing 11-methyl ester group of agarwood. Fitoterapia. 2020 ; 143 : 104557. doi:10.1016/j.fitote.2020.104557 
  110. Shao H, Mei WL, Kong FD, Dong WH, Gai CJ, Li W, et al. Sesquiterpenes of agarwood from Gyrinops salicifolia. Fitoterapia. 2016 ; 113 : 182-7. doi:10.1016/j.fitote.2016.07.015 
  111. Li W, Liao G, Dong WH, Kong FD, Wang P, Wang H, et al. Sesquiterpenoids from Chinese agarwood induced by artificial holing. Molecules. 2016 ; 21(3) : 274. doi:10.3390/molecules21030274 
  112. Wang HN, Dong WH, Huang SZ, Li W, Kong FD, Wang H, et al. Three new sesquiterpenoids from agarwood of Aquilaria crassna. Fitoterapia. 2016 ; 114 : 7-11. doi:10.1016/j.fitote.2016.07.014 
  113. Arai MA, Yamaguchi Y, Ishibashi M. Total synthesis of agalloside, isolated from Aquilaria agallocha, by the 5-O-glycosylation of flavan. Org Biomol Chem. 2017 ; 15(23) : 5025-32. doi:10.1039/c7ob01004d 
  114. Xiao WJ, Chen HQ, Wang H, Cai CH, Mei WL, Dai HF. New secondary metabolites from the endophytic fungus Fusarium sp. HP-2 isolated from "Qi-Nan" agarwood. Fitoterapia. 2018 ; 130 : 180-3. doi:10.1016/j.fitote.2018.08.008 
  115. Han M, Zhang H, Hu M, Sun W, Li Z, Cao G, et al. Inhalation administration of agarwood incense rescues scopolamine-induced learning and memory impairment in mice. Front Pharmacol. 2021 ; 12 : 821356. doi:10.3389/fphar.2021.821356 
  116. Lee MJ, Jang M, Bae CS, Park KS, Kim HJ, Lee S, et al. Effects of oriental medicine Kyung- Ok-Ko on uterine abnormality in hyperandrogenized rats. Rejuvenation Research. 2016 ; 19(6) : 456-66. doi:10.1089/rej.2015.1787 
  117. De Rubis G, Paudel KR, Manandhar B, Singh SK, Gupta G, Malik R, et al. Agarwood oil nanoemulsion attenuates cigarette smoke-induced inflammation and oxidative stress markers in BCi-NS1. 1 Airway Epithelial Cells. Nutrients. 2023 ; 15(4) : 1019. doi:10.3390/nu15041019 
  118. Hwang JH, Jung HW. TA pharmacopuncture as a primary and independent treatment for frequent sprains occurring over 9 months in a patient with needle sickness: Case report. Medicine. 2018 ; 97(45). 
  119. Hwang WD. A report on clinical application of chenxiang about chronic renal failure. The Journal of Internal Korean Medicine. 2004 ; 25(2) : 368-78. 
  120. Shivanand P, Arbie NF, Krishnamoorthy S, Ahmad N. Agarwood-the fragrant molecules of a wounded tree. Molecules. 2022 ; 27(11) : 3386. doi:10.3390/molecules27113386 
  121. Kim HM. Antiallergy drugs from oriental medicines. Oriental Pharmacy and Experimental Medicine. 2000 ; 1(1) : 1-7. 
  122. Wang Y, Hussain M, Jiang Z, Wang Z, Gao J, Ye F, et al. Aquilaria species (Thymelaeaceae) distribution, volatile and non-volatile phytochemicals, pharmacological uses, agarwood grading system, and induction methods. Molecules. 2021 ; 26(24) : 7708. 
  123. Yu M, He QQ, Chen XQ, Feng J, Wie JH, Liu YY. Chemical and bioactivity diversity of 2-(2- phenylethyl) chromones in Agarwood: A review. Chemistry & Biodiversity. 2022 ; 19(12) : e202200490. doi:10.1002/cbdv.202200490 
  124. Wang S, Yu Z, Wang C, Wu C, Guo P, Wei J. Chemical constituents and pharmacological activity of agarwood and Aquilaria plants. Molecules. 2018 ; 23(2) : 342. 
  125. Li W, Chen HQ, Wang H, Mei WL, Dai HF. Natural products in agarwood and Aquilaria plants: Chemistry, biological activities and biosynthesis. Natural product reports. 2021 ; 38(3) : 528-65. doi:10.1039/d0np00042f 
  126. Jeong HJ, Hong SH, Kim HM. Oriental medicines with anti-anaphylactic effect. Oriental Pharmacy and Experimental Medicine. 2004 ; 4(3) : 125-36.  https://doi.org/10.3742/OPEM.2004.4.3.125
  127. Shamsi-Baghbanan H, Sharifian A, Esmaeili S, Minaei B. Hepatoprotective herbs, avicenna viewpoint. Iranian Red Crescent Medical Journal. 2014 ; 16(1). 
  128. Shivanand P, Arbie NF, Krishnamoorthy S, Ahmad N. Agarwood-the fragrant molecules of a wounded tree. Molecules. 2022 ; 27(11) : 3386. doi:10.3390/molecules27113386 
  129. Lee SH, Kim, Y. I., Yang, G. Y., Kim, J. H., Heo, Y. K., & Lee, H. The literatural study on prescription about low back pain. Journal of Haehwa Medicine. 2007 ; 16(1) : 41-59. 
  130. Cho SH, & Jeong, J. H. The literatual study on the external medical treatment of Menorrhalgia and Leucorrhea for gynecologic condition. Journal of Haehwa Medicine. 2000 ; 9(1) : 319-35. 
  131. Lee MS, Lee JH, Yoon TK, Lee JC, Lee BK. Study on the "Moschus substitute for Aquilariae Resinatum Lignum or Aucklandiae Radix" of Gongjin-Dan in the classic literature. Official Journal of The Korean Medicine Society For The Herbal Formula Study. 2015 ; 23(2) : 235-43. doi:10.14374/HFS.2015.23.2.235 
  132. Li QQ, Wang G, Huang F, Banda M, Reed E. Antineoplastic effect of β-elemene on prostate cancer cells and other types of solid tumour cells. Journal of Pharmacy and Pharmacology. 2010 ; 62(8) : 1018-27. doi:10.1111/j.2042-7158.2010.01135.x 
  133. Dai ZJ, Tang W, Lu WF, Gao J, Kang HF, Ma XB, et al. Antiproliferative and apoptotic effects of β-elemene on human hepatoma HepG2 cells. Cancer Cell International. 2013 ; 13(1) : 1-10. doi:10.1186/1475-2867-13-27 
  134. Li X, Wang G, Zhao J, Ding H, Cunningham C, Chen F, et al. Antiproliferative effect of β- elemene in chemoresistant ovarian carcinoma cells is mediated through arrest of the cell cycle at the G2-M phase. Cellular and Molecular Life Sciences CMLS. 2005 ; 62 : 894-904. doi:10. 1007/s00018-005-5027-1  https://doi.org/10.1007/s00018-005-5027-1
  135. Yao YQ, Ding X, Jia YC, Huang CX, Wang YZ, Xu YH. Anti-tumor effect of β-elemene in glioblastoma cells depends on p38 MAPK activation. Cancer letters. 2008 ; 264(1) : 127-34. doi:10.1016/j.canlet.2008.01.049 
  136. Wang G, Li X, Huang F, Zhao J, Ding H, CunninghamC, et al. Antitumor effect of β-elemene in non- small-cell lung cancer cells is mediated via induction of cell cycle arrest and apoptotic cell death. Cellular and Molecular Life Sciences CMLS. 2005 ; 62 : 881-93. doi:10. 1007/s00018-005-5017-3  https://doi.org/10.1007/s00018-005-5017-3
  137. Chen P, Li X, Zhang R, Liu S, Xiang Y, Zhang M, et al. Combinative treatment of β-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation. Theranostics. 2020 ; 10(11) : 5107. doi:10.7150/thno.44705 
  138. Zheng F, Tang Q, Zheng X, Wu J, Huang H, Zhang H, Hann SS. Inactivation of Stat3 and crosstalk of miRNA155-5p and FOXO3a contribute to the induction of IGFBP1 expression by betaelemene in human lung cancer. Experimental & molecular medicine. 2018 ; 50(9) : 1-14. doi:10.1038/s12276-018-0146-6 
  139. Guan C, Liu W, Yue Y, Jin H, Wang X, Wang XJ. Inhibitory effect of β-elemene on human breast cancer cells. International journal of clinical and experimental pathology. 2014 ; 7(7) : 3948. 
  140. Wu J, Tang Q, Yang L, Chen Y, Zheng F, Hann SS. Interplay of DNA methyltransferase 1 and EZH2 through inactivation of Stat3 contributes to β-elemene-inhibited growth of nasopharyngeal carcinoma cells. Scientific Reports. 2017 ; 7(1): 509. doi :10.1038/s41598-017-00626-6 
  141. Qureshi MZ, Attar R, Romero MA, Sabitaliyevich UY, Nurmurzayevich SB, Ozturk O, et al. Regulation of signaling pathways by β-elemene in cancer progression and metastasis. Journal of cellular biochemistry. 2019 ; 120(8): 12091-100. doi:10.1002/jcb.28624 
  142. Lee RX, Li QQ, Reed E. β-elemene effectively suppresses the growth and survival of both platinum-sensitive and-resistant ovarian tumor cells. Anticancer research. 2012 ; 32(8) : 3103-13. 
  143. Li QQ, Wang G, Liang H, Li JM, Huang F, Agarwal PK, et al. β-Elemene promotes cisplatin-induced cell death in human bladder cancer and other carcinomas. Anticancer research. 2013 ; 33(4) : 1421-8. 
  144. Zhang SY, Li XB, Hou SG, Sun Y, Shi YR, Lin SS. Cedrol induces autophagy and apoptotic cell death in A549 non-small cell lung carcinoma cells through the P13K/Akt signaling pathway, the loss of mitochondrial transmembrane potential and the generation of ROS. International Journal of Molecular Medicine. 2016 ; 38(1) : 291-9. doi:10.3892/ijmm.2016.2585 
  145. Chien JH, Chang KF, Lee SC, Lee CJ, Chen YT, Lai HC, et al. Cedrol restricts the growth of colorectal cancer in vitro and in vivo by inducing cell cycle arrest and caspase-dependent apoptotic cell death. International Journal of Medical Sciences. 2022 ; 19(13): 1953. doi:10.7150/ijms.77719 
  146. Chang KF, Huang XF, Chang JT, Huang YC, Weng JC, Tsai NM. Cedrol suppresses glioblastoma progression by triggering DNA damage and blocking nuclear translocation of the androgen receptor. Cancer letters. 2020 ; 495 : 180-90. doi:10.1016/j.canlet.2020.09.007 
  147. Jin S, Park J, Yun HJ, Oh YN, Oh S, Choi YH, et al. Cedrol, a sesquiterpene isolated from Juniperus chinensis, inhibits human colorectal tumor growth associated through downregulation of minichromosome maintenance proteins. Journal of Cancer Prevention. 2022 ; 27(4) : 221. doi:10.15430/JCP.2022.27.4.221 
  148. Yun HJ, Jin S, Park J, Lee EW, Lee HT, Choi YH, et al. Induction of cell cycle arrest, apoptosis, and reducing the expression of MCM proteins in human lung carcinoma A549 cells by cedrol, isolated from Juniperus chinensis. Journal of Microbiology and Biotechnology. 2022 ; 32(7) : 918. doi:10.4014/jmb.2205.05012 
  149. Mishra SK, Bae YS, Lee YM, Kim JS, Oh SH, KimHM. Sesquiterpene alcohol cedrol chemosensitizes human cancer cells and suppresses cell proliferation by destabilizing plasma membrane lipid rafts. Frontiers in cell and developmental biology. 2021 ; 8 : 571676. doi: 10.3389/fcell.2020.571676 
  150. Dahham SS, Tabana YM, Iqbal MA, Ahamed MB, Ezzat MO, Majid AS, Majid AM. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules. 2015 ; 20(7) : 11808-29. doi:10.3390/molecules200711808 
  151. Chung KS, Hong JY, Lee JH, Lee HJ, Park JY, Choi JH, et al. β-caryophyllene in the essential oil from chrysanthemum boreale induces G1 phase cell cycle arrest in human lung cancer cells. Molecules. 2019 ; 24(20) : 3754. doi:10.3390/molecules24203754 
  152. Jung JI, Kim EJ, Kwon GT, Jung YJ, Park T, Kim Y, et al. β-Caryophyllene potently inhibits solid tumor growth and lymph node metastasis of B16F10 melanoma cells in high-fat diet-induced obese C57BL/6N mice. Carcinogenesis. 2015 ; 36(9) : 1028-39. doi:10.1093/carcin/bgv076 
  153. Bommareddy A, Knapp K, Nemeth A, Steigerwalt J, Landis T, Vanwert AL, et al. Alpha-Santalol, a component of sandalwood oil inhibits migration of breast cancer cells by targeting the β-catenin pathway. Anticancer Research. 2018 ; 38(8) : 4475-80. doi:10.21873/anticanres.12750 
  154. Kaur M, Agarwal C, Singh RP, Guan X, Dwivedi C, Agarwal R. Skin cancer chemopreventive agent, α-santalol, induces apoptotic death of human epidermoid carcinoma A431 cells via caspase activation together with dissipation of mitochondrial membrane potential and cytochrome c release. Carcinogenesis. 2005 ; 26(2) : 369-80. doi:10.1093/carcin/bgh325 
  155. Shin Y, Lee Y. Cytotoxic activity from Curcuma zedoaria through mitochondrial activation on ovarian cancer cells. Toxicological research. 2013 ; 29 : 257-61. doi:10.5487/TR.2013.29.4.257 
  156. Grover M, Behl T, Virmani T, Sanduja M, Makeen HA, Albratty M, et al. Exploration of cytotoxic potential of longifolene/junipene isolated from Chrysopogon zizanioides. Molecules. 2022 ; 27(18) : 5764. doi:10.3390/molecules27185764 
  157. Garlet Q, Pires L, Silva D, Spall S, Gressler L, Burger M, et al. Effect of (+)-dehydrofukinone on GABA A receptors and stress response in fish model. Brazilian Journal of Medical and Biological Research. 2015 ; 49(1) : e4872. doi:10.1590/ 1414-431X20154872 
  158. Garlet QI, Souza CF, Rodrigues P, Descovi SN, Martinez-Rodriguez G, Baldisserotto B, Heinzmann BM. GABAa receptor subunits expression in silver catfish (Rhamdia quelen) brain and its modulation by Nectandra grandiflora Nees essential oil and isolated compounds. Behavioural Brain Research. 2019 ; 376 : 112178. doi:10.1016/j.bbr.2019.112178 
  159. Garlet QI, Rodrigues P, Barbosa LB, Londero AL, Mello CF, Heinzmann BM. Nectandra grandiflora essential oil and its isolated sesquiterpenoids minimize anxiety-related behaviors in mice through GABAergic mechanisms. Toxicology and Applied Pharmacology. 2019 ; 375 : 64-80. doi:10.1016/j.taap.2019.05.003 
  160. Kagawa D, Jokura H, Ochiai R, Tokimitsu I, Tsubone H. The sedative effects and mechanism of action of cedrol inhalation with behavioral pharmacological evaluation. Planta medica. 2003 ; 69(07) : 637-41. doi:10.1055/s-2003-41114 
  161. Zhang K, Lu J, Yao L. Involvement of the dopamine D1 receptor system in the anxiolytic effect of cedrol in the elevated plus maze and light-dark box tests. Journal of pharmacological sciences. 2020 ; 142(1) : 26-33. doi:10.1016/ j.jphs.2019.11.004 
  162. Yada Y, Sadachi H, Nagashima Y, Suzuki T. Overseas survey of the effect of cedrol on the autonomic nervous system in three countries. Journal of Physiological Anthropology. 2007 ; 26(3) : 349-54. doi:10.2114/jpa2.26.349 
  163. Hwang ES, Kim HB, Lee S, Kim MJ, Kim KJ, Han G, et al. Antidepressant-like effects of β-caryophyllene on restraint plus stress-induced depression. Behavioural brain research. 2020 ; 380 : 112439. doi:10.1016/j.bbr.2019.112439 
  164. Johnson A, Stewart A, El-Hakim I, Hamilton TJ. Effects of super-class cannabis terpenes beta-caryophyllene and alpha-pinene on zebrafish behavioural biomarkers. Scientific Reports. 2022 ; 12(1) : 17250. doi:10.1038/s41598-022-21552-2 
  165. Moo CL, Yang SK, Osman MA, Yuswan MH, Loh JY, Lim WM, et al. Antibacterial Activity and Mode of Action of β-caryophyllene on Bacillus cereus. Polish journal of microbiology. 2020 ; 69(1) : 49-54. doi:10.33073/pjm-2020-007 
  166. Oh I, Yang WY, Park J, Lee S, Mar W, Oh K-B, Shin J. In vitro Na+/K+-ATPase inhibitory activity and antimicrobial activity of sesquiterpenes isolated from Thujopsis dolabrata. Archives of pharmacal research. 2011 ; 34 : 2141-7. doi:10.1007/s12272-011-1218-5 
  167. Rahman MS, Ahad A, Saha SK, Hong J, Kim KH. Antibacterial and phytochemical properties of Aphanamixis polystachya essential oil. Analitycal Science & Technology. 2017 ; 30(3). doi:10.5806/AST.2017.30.3.113 
  168. Yagi S, Babiker R, Tzanova T, Schohn H. Chemical composition, antiproliferative, antioxidant and antibacterial activities of essential oils from aromatic plants growing in Sudan. Asian Pacific journal of tropical medicine. 2016 ; 9(8) : 763-70. doi:10.1016/j.apjtm.2016.06.009 
  169. da Silva GNS, Pozzatti P, Rigatti F, Horner R, Alves SH, Mallmann CA, Heinzmann BM. Antimicrobial evaluation of sesquiterpene α-curcumene and its synergism with imipenem. Journal of Microbiology, Biotechnology & Food Sciences. 2015 ; 4(5). doi:10.15414/jmbfs.2015.4.5.434-436 
  170. Sieniawska E, Sawicki R, Golus J, Swatko-Ossor M, Ginalska G, Skalicka-Wozniak K. Nigella damascena L. essential oil-a valuable source of β-elemene for antimicrobial testing. Molecules. 2018 ; 23(2) : 256. doi:10.3390/molecules23020256 
  171. Zhou Y, Jia L, Zhang G, Chen G, Zhou D, Shi X, et al. Cedrol-loaded dissolvable microneedles based on flexible backing for promoting hair growth. Expert Opinion on Drug Delivery. 2023 : 1-10. doi:10.1080/17425247.2023.2244413 
  172. Zhang Y, Han L, Chen SS, Guan J, Qu FZ, Zhao YQ. Hair growth promoting activity of cedrol isolated from the leaves of Platycladus orientalis. Biomedicine & Pharmacotherapy. 2016 ; 83 : 641-7. doi:10.1016/j.biopha.2016.07.022 
  173. Deng Y, Huang F, Wang J, Zhang Y, Zhang Y, Su G, Zhao Y. Hair growth promoting activity of cedrol nanoemulsion in C57BL/6 mice and its bioavailability. Molecules. 2021 ; 26(6) : 1795. doi:10.3390/molecules26061795 
  174. Zhang Y, Wang J, Qu F, Zhang , Su G, Zhao Y. Hair growth promotion effect of cedrol cream and its dermatopharmacokinetics. RSC advances. 2018 ; 8(73) : 42170-8. doi:10.1039/C8RA08667B 
  175. Chen SS, Zhang Y, Lu QL, Lin Z, Zhao Y. Preventive effects of cedrol against alopecia in cyclophosphamide-treated mice. Environmental Toxicology and Pharmacology. 2016 ; 46 : 270-6. doi:10.1016/j.etap.2016.07.020 
  176. Dong W, Wang S, Qian W, Li S, Wang P. Cedrol alleviates the apoptosis and inflammatory response of IL-1β-treated chondrocytes by promoting miR-542-5p expression. In Vitro Cellular & Developmental Biology-Animal. 2021 ; 57 : 962-72. doi:10.1007/s11626-021-00620-3 
  177. Aati H, El-Gamal A, Kayser O. Chemical composition and biological activity of the essential oil from the root of Jatropha pelargoniifolia Courb. native to Saudi Arabia. Saudi pharmaceutical journal. 2019 ; 27(1) : 88-95. doi:10.1016/j.jsps.2018.09.001 
  178. Alizadeh M, Jalal M, Hamed K, Saber A, Kheirouri S, Pourteymour Fard Tabrizi F, Kamari N. Recent updates on anti-inflammatory and antimicrobial effects of furan natural derivatives. Journal of Inflammation Research. 2020 : 451-63. doi:10.2147/JIR.S262132 
  179. Moghrovyan A, Parseghyan L, Sevoyan G, Darbinyan A, Sahakyan N, Gaboyan M, et al. Antinociceptive, anti-inflammatory, and cytotoxic properties of Origanum vulgare essential oil, rich with β-caryophyllene and β-caryophyllene oxide. Korean J Pain. 2022 ; 35 : 140-51. doi:10.3344/kjp.2022.35.2.140 
  180. Tambe Y, Tsujiuchi H, Honda G, Ikeshiro Y, Tanaka S. Gastric cytoprotection of the non- steroidal anti-inflammatory sesquiterpene, β-caryophyllene. Planta medica. 1996 ; 62(05) : 469-70. doi:10.1055/s-2006-957942 
  181. Yeom JE, Kim SK, Park SY. Regulation of the gut microbiota and inflammation by β-caryophyllene extracted from cloves in a dextran sulfate sodium-induced colitis mouse model. Molecules. 2022 ; 27(22) : 7782. doi:10.3390/ molecules27227782 
  182. Cho JY, Kim HY, Kim SK, Park JHY, Lee HJ, Chun HS. β-Caryophyllene attenuates dextran sulfate sodium-induced colitis in mice via modulation of gene expression associated mainly with colon inflammation. Toxicology reports. 2015 ; 2 : 1039-45. doi:10.1016/j.toxrep.2015.07.018 
  183. de Oliveira CC, de Oliveira CV, Grigoletto J, Ribeiro LR, Funck VR, Grauncke ACB, et al. Anticonvulsant activity of β-caryophyllene against pentylenetetrazol-induced seizures. Epilepsy & behavior. 2016 ; 56 : 26-31. doi:10.1016/j.yebeh.2015.12.040 
  184. Mallmann MP, Mello FK, Neuberger B, da Costa Sobral KG, Fighera MR, Royes LFF, et al. Beta-caryophyllene attenuates short-term recurrent seizure activity and blood-brain-barrier breakdown after pilocarpine-induced status epilepticus in rats. Brain Research. 2022 ; 1784 : 147883. doi:10.1016/j.brainres.2022.147883 
  185. Garlet QI, da Costa Pires L, Milanesi LH, Marafiga JR, Baldisserotto B, Mello CF, Heinzmann BM. (+)-Dehydrofukinone modulates membrane potential and delays seizure onset by GABAa receptormediated mechanism in mice. Toxicology and Applied Pharmacology. 2017 ; 332 : 52-63. doi:10.1016/j.taap.2017.07.010 
  186. Segat GC, Manjavachi MN, Matias DO, Passos GF, Freitas CS, Costa R, Calixto JB. Antiallodynic effect of β-caryophyllene on paclitaxel-induced peripheral neuropathy in mice. Neuropharmacology. 2017 ; 125 : 207-19. doi:10.1016/j.neuropharm.2017.07.015 
  187. Aguilar-Avila DS, Flores-Soto ME, Tapia-Vazquez C, Pastor-Zarandona OA, Lopez-Roa RI, ViverosParedes JM. β-Caryophyllene, a natural sesquiterpene, attenuates neuropathic pain and depressive-like behavior in experimental diabetic mice. Journal of medicinal food. 2019 ; 22(5) : 460-8. doi: 10.1089/jmf.2018.0157 
  188. Sakhaee MH, Sayyadi SAH, Sakhaee N, Sadeghnia HR, Hosseinzadeh H, Nourbakhsh F, Forouzanfar F. Cedrol protects against chronic constriction injury-induced neuropathic pain through inhibiting oxidative stress and inflammation. Metabolic Brain Disease. 2020 ; 35 : 1119-26. doi:10.1007/ s11011-020-00581-8 
  189. Wang G, Ma W, Du J. β-Caryophyllene (BCP) ameliorates MPP+ induced cytotoxicity. Biomedicine & Pharmacotherapy. 2018 ; 103 : 1086-91. doi:10.1016/j.biopha.2018.03.168 
  190. Chavez-Hurtado P, Gonzalez-Castaneda RE, Beas-Zarate C, Flores-Soto ME, Viveros-Paredes JM. β-Caryophyllene reduces DNA oxidation and the overexpression of glial fibrillary acidic protein in the prefrontal cortex and hippocampus of D-galactose-induced aged BALB/c mice. Journal of Medicinal Food. 2020 ; 23(5) : 515-22. doi:10. 1089/jmf.2019.0111  https://doi.org/10.1089/jmf.2019.0111
  191. Kim S, Lee S, Hong C, Cho S, Park M, Choi I. Antifungal effect of elemol and eudesmol from Cryptomeria japonica essential oil against Trichophyton rubrum. Academia Journal of Agricultural Research. 2016 ; 4(8) : 511-7. doi:10.15413/ajar.2016.0182 
  192. Mukai A, Takahashi K, Ashitani T. Antifungal activity of longifolene and its autoxidation products. European Journal of Wood and Wood Products. 2018 ; 76 : 1079-82. doi:10.1007/s00107-017-1281-9 
  193. Ryu JS, Cho HI, Won JH, Jeon MN, Kwon OS, Won BM, et al. Anti-aging effects of cedrol and collagen-derived peptide. Journal of the Society of Cosmetic Scientists of Korea. 2015 ; 41(3) : 229-35. doi:10.15230/SCSK.2015.41.3.229 
  194. Jin MH, Park SG, Hwang YL, Lee MH, Jeong NJ, Roh SS, et al. Cedrol enhances extracellular matrix production in dermal fibroblasts in a MAPK-dependent manner. Annals of Dermatology. 2012 ; 24(1) : 16-21. doi:10.5021/ad.2012.24.1.16 
  195. Woo HJ, Yang JY, Kwon HJ, Kim HW, Kim S-H, Kim J-B. Comparative transcriptome analysis of caryophyllene-treated Helicobacter pylori. 2021 ; 49(3) : 440-8. doi:10.48022/mbl.2107.07001 
  196. Woo HJ, Yang JY, Lee MH, Kim HW, Kwon HJ, Park M, et al. Inhibitory effects of β-caryophyllene on Helicobacter pylori infection in vitro and in vivo. International journal of molecular sciences. 2020 ; 21(3) : 1008. doi:10.3390/ijms21031008 
  197. Ozek G, Schepetkin IA, Yermagambetova M, Ozek T, Kirpotina LN, Almerekova SS, et al. Innate immunomodulatory activity of cedrol, a component of essential oils isolated from Juniperus species. Molecules. 2021 ; 26(24) : 7644. doi:10.3390/molecules26247644 
  198. Baradaran Rahimi V, Askari VR. A mechanistic review on immunomodulatory effects of selective type two cannabinoid receptor β-caryophyllene. Biofactors. 2022 ; 48(4) : 857-82. doi:10.1002/biof.1869 
  199. Eller F, Vander Meer R, Behle R, Flor-Weiler L, Palmquist DE. Bioactivity of cedarwood oil and cedrol against arthropod pests. Environmental entomology. 2014 ; 43(3) : 762-6. doi:10.1603/EN13270 
  200. Mukai A, Takahashi K, Ashitani T. Natural autoxidation of longifolene and anti-termite activities of the products. Journal of Wood Science. 2017 ; 63(4) : 360-8. doi:10.1007/s10086-017-1637-0 
  201. Yoo HJ, Jwa SK. Efficacy of β-caryophyllene for periodontal disease related factors. Archives of oral biology. 2019 ; 100 : 113-8. doi:10.1016/j.archoralbio.2019.02.015 
  202. Yoo HJ, Jwa SK. Inhibitory effects of β-caryophyllene on Streptococcus mutans biofilm. Archives of oral biology. 2018 ; 88 : 42-6. doi:10.1016/j.archoralbio.2018.01.009 
  203. Zhao Y, Li M, Guo J, Fang J, Geng R, Wang Y, et al. Cedrol, a major component of cedarwood oil, ameliorates high-fat diet-induced obesity in mice. Molecular Nutrition & Food Research. 2023 : 2200665. doi:10.1002/mnfr.202200665 
  204. Franco-Arroyo NN, Viveros-Paredes JM, ZepedaMorales ASM, Roldan E, Marquez-Aguirre AL, Zepeda-Nuno JS, et al. β-Caryophyllene, a dietary cannabinoid, protects against metabolic and immune dysregulation in a diet-induced obesity mouse model. Journal of Medicinal Food. 2022 ; 25(10) : 993-1002. doi:10.1089/jmf.2021.0166 
  205. Okugawa H, Ueda R, Matsumoto K, Kawanishi K, Kato A. Effect of α-santalol and β-santalol from sandalwood on the central nervous system in mice. Phytomedicine. 1995 ; 2(2) : 119-26. doi:10. 1016/S0944-7113(11)80056-5  https://doi.org/10.1016/S0944-7113(11)80056-5
  206. Yang HO, Suh DY, Han BH. Isolation and characterization of platelet-activating factor receptor binding antagonists from Biota orientalis. Planta medica. 1995 ; 61(01) : 37-40. doi:10.1055/s-2006-957995 
  207. Hsu HC, Yang WC, Tsai WJ, Chen CC, Huang HY, Tsai YC. α-Bulnesene, a novel PAF receptor antagonist isolated from Pogostemon cablin. Biochemical and Biophysical Research Communications. 2006 ; 345(3) : 1033-8. doi:10.1016/j.bbrc.2006.05.006 
  208. Chang HJ, Kim JM, Lee JC, Kim WK, Chun HS. Protective effect of β-caryophyllene, a natural bicyclic sesquiterpene, against cerebral ischemic injury. Journal of medicinal food. 2013 ; 16(6) : 471-80. doi:10.1089/jmf.2012.2283 
  209. Hu Q, Zuo T, Deng L, Chen S, Yu W, Liu S, et al. β-Caryophyllene suppresses ferroptosis induced by cerebral ischemia reperfusion via activation of the NRF2/HO-1 signaling pathway in MCAO/R rats. Phytomedicine. 2022 ; 102 : 154112. doi:10.1016/j.phymed.2022.154112 
  210. Zhang Y, Liu Y, Peng F, Wei X, Hao H, Li W, Zhao Y. Cedrol from ginger alleviates rheumatoid arthritis through dynamic regulation of intestinal microenvironment. Food & Function. 2022 ; 13(22) : 11825-39. doi:10.1039/d2fo01983c
  211. Zhang Y, Shen J, Zhao J, Guan J, Wei X, Miao D, et al. Cedrol from ginger ameliorates rheumatoid arthritis via reducing inflammation and selectively inhibiting JAK3 phosphorylation. Journal of agricultural and food chemistry. 2021 ; 69(18) : 5332-43. doi:10.1021/acs.jafc.1c00284 
  212. Wang J, Chen S, Zhang Ym, Guan J, Su GY, Ding M, et al. Anti-inflammatory and analgesic activity based on polymorphism of cedrol in mice. Environmental Toxicology and Pharmacology. 2019 ; 68 : 13-8. doi:10.1016/j.etap.2019.02.005 
  213. Dekic M, Radulovic N, Stojanovic N, Mladenovic M. Analgesic activity of dehydrofukinone, sesquiterpene ketone from Senecio nemorensis L.(Asteraceae). Facta Universitatis, Series: Physics, Chemistry and Technology. 2018 ; 16(1) : 119. 
  214. Gushiken LFS, Beserra FP, Hussni MF, Gonzaga MT, Ribeiro VP, De Souza PF, et al. Beta-caryophyllene as an antioxidant, anti-inflammatory and re-epithelialization activities in a rat skin wound excision model. Oxidative Medicine and Cellular Longevity. 2022 ; 2022. doi:10.1155/2022/9004014 
  215. Koyama S, Purk A, Kaur M, Soini HA, Novotny MV, Davis K, et al. Beta-caryophyllene enhances wound healing through multiple routes. PloS one. 2019 ; 14(12) : e0216104. doi:10.1371/journal.pone.0216104 
  216. Astani A, Reichling J, Schnitzler P. Screening for antiviral activities of isolated compounds from essential oils. Evidence-based complementary and alternative medicine. 2011 ; 2011. doi:10.1093/ecam/nep187 
  217. Tarumi W, Shinohara K. Olfactory exposure to β-caryophyllene increases testosterone levels in women's saliva. Sexual Medicine. 2020 ; 8(3) : 525-31. doi:10.1016/j.esxm.2020.06.001 
  218. Wang C, Hao R, Peng B, Chang J, Chen S, Chen Y, et al. Dissolvable hyaluronic acid microneedles loaded with β-Elemene for the treatment of psoriasis. Frontiers in Pharmacology. 2022 ; 13 : 1067051. doi:10.3389/fphar.2022.1067051 
  219. Han NR, Moon PD, Ryu KJ, Jang JB, Kim HM, Jeong HJ. β-eudesmol suppresses allergic reactions via inhibiting mast cell degranulation. Clinical and Experimental Pharmacology and Physiology. 2017 ; 44(2) : 257-65. doi:10.1111/1440-1681.12698 
  220. Hori E, Shojaku H, Watanabe N, Kawasaki Y, Suzuki M, De Araujo MF, et al. Effects of direct cedrol inhalation into the lower airway on brain hemodynamics in totally laryngectomized subjects. Autonomic Neuroscience. 2012 ; 168(1-2) : 88-92. doi:10.1016/j.autneu.2012.01.010 
  221. Kar N, Chakraborty S, De AK, Ghosh S, Bera T. Development and evaluation of a cedrol-loaded nanostructured lipid carrier system for in vitro and in vivo susceptibilities of wild and drug resistant Leishmania donovani amastigotes. European Journal of Pharmaceutical Sciences. 2017 ; 104 : 196-211. doi:10.1016/j.ejps.2017.03.046 
  222. Al Mansouri S, Ojha S, Al Maamari E, Al Ameri M, Nurulain SM, Bahi A. The cannabinoid receptor 2 agonist, β-caryophyllene, reduced voluntary alcohol intake and attenuated ethanol-induced place preference and sensitivity in mice. Pharmacology Biochemistry and Behavior. 2014 ; 124 : 260-8. doi:10.1016/j.pbb.2014.06.025 
  223. Sukmawan YP, Anggadiredja K, Adnyana IK. Anti-neuropathic pain mechanistic study on A. conyzoides essential oil, Precocene II, caryophyllene, or longifolene as single agents and in combination with pregabalin. CNS & Neurological DisordersDrug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 2023 ; 22(6) : 924-31. doi:10.2174/1871527321666220418121329 
  224. Ahn SS, Yeo H, Jung E, Ou S, Lee YH, Lim Y, Shin SY. β-Caryophyllene Ameliorates 2, 4- Dinitrochlorobenzene-Induced Atopic Dermatitis through the Downregulation of Mitogen-Activated Protein Kinase/EGR1/TSLP Signaling Axis. International Journal of Molecular Sciences. 2022 ; 23(23) : 14861. doi:10.3390/ijms232314861 
  225. Akutsu T, Tanaka S, Murakami Y, Nakajima K, Nagashima Y, Yada Y, et al., editors. Effect of the natural fragrance "cedrol" on dopamine metabolismin the lateral hypothalamic area of restrained rats: A microdialysis study. International Congress Series ; 2006 ; 1287 : 195-200. Elsevier.  https://doi.org/10.1016/j.ics.2005.12.020
  226. Adefegha SA, Oboh G, Olopade EO. β- caryophyllene improves sexual performance via modulation of crucial enzymes relevant to erectile dysfunction in rats. Toxicological Research. 2021 ; 37 : 249-60. doi:10.1007/s43188-020-00061-2 
  227. Cho H-I, Hong J-M, Choi J-W, Choi H-S, Kwak JH, Lee D-U, et al. β-Caryophyllene alleviates D-galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the TLR4 and RAGE signaling pathways. European Journal of Pharmacology. 2015 ; 764 : 613-21. doi:10.1016/j.ejphar.2015.08.001 
  228. Forouzanfar F, Pourbagher-Shahri AM, Ghazavi H. Evaluation of antiarthritic and antinociceptive effects of cedrol in a rat model of arthritis. Oxidative Medicine and Cellular Longevity. 2022 ; 2022 : 494365. doi:10.1155/2022/4943965 
  229. Baldissera MD, Souza CF, Grando TH, Doleski PH, Boligon AA, Stefani LM, Monteiro SG. Hypolipidemic effect of β-caryophyllene to treat hyperlipidemic rats. Naunyn-Schmiedeberg's archives of pharmacology. 2017 ; 390 : 215-23. doi:10.1007/s00210-016-1326-3 
  230. Sun W, Kim DH, Byon CH, Choi HI, Park JS, Bae EH, et al. β-elemene attenuates renal fibrosis in the unilateral ureteral obstruction model by inhibition of STAT3 and Smad3 signaling via suppressing MyD88 expression. International Journal of Molecular Sciences. 2022 ; 23(10) : 5553. doi:10.3390/ijms23105553 
  231. Xu C, Jin SQ, Jin C, Dai ZH, Wu YH, He GL, et al. Cedrol, a Ginger-derived sesquiterpineol, suppresses estrogen-deficient osteoporosis by intervening NFATc1 and reactive oxygen species. International Immunopharmacology. 2023 ; 117 : 109893. doi:10.1016/j.intimp.2023.109893 
  232. Scandiffio R, Geddo F, Cottone E, Querio G, Antoniotti S, Gallo MP, et al. Protective effects of (E)-β-caryophyllene (BCP) in chronic inflammation. Nutrients. 2020 ; 12(11) : 3273. doi:10.3390/nu12113273 
  233. Jin KS, Lee JY, Hyun SK, Kim BW, Kwon HJ. Juniperus chinensis and the functional compounds, cedrol and widdrol, ameliorate α-melanocyte stimulating hormone-induced melanin formation in B16F10 cells. Food Science and Biotechnology. 2015 ; 24 : 611-8. doi:10.1007/s10068-015-0080-5 
  234. Lee HJ. Pharmacological action of linalool, oleanolic acid and β-caryophyllene on gene expression and production of mucin from goblet cells in respiratory epithelium. Yakhak Hoeji. 2017 ; 61(2) : 75-82. doi:10.17480/psk.2017.61.2.75 
  235. Takeda A, Watanuki E, Koyama S. Effects of inhalation aromatherapy on symptoms of sleep disturbance in the elderly with dementia. Evidence-Based Complementary and Alternative Medicine. 2017 ; 2017. doi:10.1155/2017/1902807 
  236. Zhang R, Tian A, Zhang H, Zhou Z, Yu H, Chen L. Amelioration of experimental autoimmune encephalomyelitis by β-elemene treatment is associated with Th17 and Treg cell balance. Journal of Molecular Neuroscience. 2011 ; 44 : 31-40. doi:10.1007/s12031-010-9483-1 
  237. Chakraborty S, Kar N, Kumari L, De A, Bera T. Inhibitory effect of a new orally active cedrol-loaded nanostructured lipid carrier on compound 48/80-induced mast cell degranulation and anaphylactic shock in mice. International journal of nanomedicine. 2017 : 4849-68. doi:10.2147/IJN.S132114 
  238. Ghelardini C, Galeotti N, Mannelli LDC, Mazzanti G, Bartolini A. Local anaesthetic activity of β- caryophyllene. Il Farmaco. 2001 ; 56(5-7) : 387-9. doi: 10.1016/s0014-827x(01)01092-8 
  239. Kim ST. Mucin production and secretion. Korean Journal of Otorhinolaryngology-Head and Neck Surgery. 2005 ; 48(5) : 556-62. 
  240. Clinical practice guideline of Korean Medicine - Irritable bowel syndrome. Korea : National Institute for Korean Medicine Development; 2022. 32. 
  241. Lee SH. Literature review of gonorrhea. The Journal of Internal Korean Medicine. 1994 ; 15(2) : 369. 
  242. Han JY, Choo MS. Drug treatment for lower urinary tract symptoms. Journal of the Korean Medical Association. 2011 ; 54(6) : 637-45. doi:10.5124/jkma.2011.54.6.637 
  243. Ma CT, Ly TL, Van Le TH, Tran TVA, Kwon SW, Park JH. Sesquiterpene derivatives from the agarwood of Aquilaria malaccensis and their anti-inflammatory effects on NO production of macrophage RAW 264.7 cells. Phytochemistry. 2021 ; 183 : 112630. doi:10.1016/j.phytochem.2020.112630 
  244. Huo HX, Gu YF, Zhu ZX, Zhang YF, Chen XN, Guan PW, et al. LC-MS-guided isolation of anti-inflammatory 2-(2-phenylethyl) chromone dimers from Chinese agarwood (Aquilaria sinensis). Phytochemistry. 2019 ; 158 : 46-55. doi:10.1016/j.phytochem.2018.11.003 
  245. Clinical practice guideline of Korean Medicine, Functional dyspepsia: Ministry of Health and Welfare of Korea ; National Institute for Korean Medicine Development ; 2021. 252. 
  246. Ahn SW. The systematic of medicinal herb books and the development history of medicinal herb study. Korean Journal of Oriental Medicine. 2005 ; 11(1) : 19-32. 
  247. Kim HS, Lee SI, Jeong JK. Systemic review on the research trend of Gastrodiae rhizoma and relationship between the herbology and KCDcode. The Korea Journal of Herbology. 2016 ; 31(2) : 21-37. doi:10.6116/kjh.2016.31.2.21. 
  248. Kim HS, Jeong JK, Lee SI. The literature study of research trend of Menthae Herba and relationship between the Herbology and KCD-code. The Korea Journal of Herbology. 2015 ; 30(5) : 29-43. doi:10.6116/kjh.2015.30.5.29. 
  249. Jang IW, Jeong JK, Kim HS, Lee SI. The literature study of research trend of Alismatis Rhizoma and relationship between the Herbology and KCD. The Korea Journal of Herbology. 2016 ; 31(2) : 47-62. doi:10.6116/kjh.2016.31.2.47 
  250. Kim HJ, Choi GY, Kim C, Lee GS, Kim JH, Lee SH, et al. Survey on revision and complements for the current curriculum of Herbology. The Journal of Korean Medicine. 2009 ; 30(4) : 118-28. doi:10.6116/kjh.2018.33.5.39 
  251. KNTP(Korean Traditional Knowledge Portal) [Online]. Korean Intellectual Property Office. Available from: https://www.koreantk.com/. 
  252. Naef R. The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: a review. Flavour and Fragrance Journal. 2011 ; 26(2) : 73-87. doi:10.1002/ffj.2034 
  253. Marini M, Vittori E, Hollemborg J, Mattoli S. Expression of the potent inflammatory cytokines, granulocyte-macrophage-colony-stimulating factor and interleukin-6 and interleukin-8, in bronchial epithelial cells of patients with asthma. Journal of Allergy and Clinical Immunology. 1992 ; 89(5) : 1001-9. doi:10.1016/0091-6749(92)90223-o 
  254. Lowy FD. Staphylococcus aureus infections. New England journal of medicine. 1998 ; 339(8) : 520-32. doi:10.1056/NEJM199808203390806 
  255. Liew HJ. A study on agarwood as a medi-food material in the food service. Food Service Industry Journal. 2022 ; 18(1) : 33-9. doi:10.22509/kfsa.2022.18.1.003 
  256. de Cassia Da Silveira e Sa R, Andrade LN, De Sousa DP. Sesquiterpenes from essential oils and anti-inflammatory activity. Natural product communications. 2015 ; 10(10) : 1934578X1501001033. 
  257. World Health Organization. WHO International Standard Terminologies on Traditional Medicine in the Western Pacific Region. Manila : WHO Regional Office for the Western Pacific. 2007: 54, 96, 168, 172, 216, 217, 218, 224.