DOI QR코드

DOI QR Code

Physicomechanical Properties Enhancement of Fast-Growing Wood Impregnated with Wood Vinegar Animal Adhesive

  • Efrida BASRI (Faculty of Forestry and Environment, Department of Forest Products, IPB University) ;
  • SAEFUDIN (Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN)) ;
  • Mahdi MUBAROK (Faculty of Forestry and Environment, Department of Forest Products, IPB University) ;
  • Wayan DARMAWAN (Faculty of Forestry and Environment, Department of Forest Products, IPB University) ;
  • Jamal BALFAS (Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN)) ;
  • Yelin ADALINA (Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN)) ;
  • Yusuf Sudo HADI (Faculty of Forestry and Environment, Department of Forest Products, IPB University)
  • Received : 2023.07.24
  • Accepted : 2023.11.08
  • Published : 2023.11.25

Abstract

This study is a continuation of our previous work, which focused on the resistance of jabon wood to termites after impregnation with wood vinegar (WV) and animal-based adhesive (kak). This paper presents the physicomechanical properties of fast-growing jabon wood impregnated with kak at two concentrations (8% and 10%) in wood vinegar or water as a solvent with and without 4% borax. The physical properties of the impregnation solution, that is, viscosity, density, pH, and solid content, were evaluated according to SNI 06-4567-1998. Some physical parameters, such as weight percent gain (WPG), density, water uptake, anti-swelling efficiency (ASE), crystallinity, and mechanical properties, i.e., modulus of elasticity (MOE), modulus of rupture (MOR), and compression strength parallel to the grain (CS), of the impregnated wood were determined. Based on these results, wood impregnated using a mixture of kak in WV presented better physical (increased WPG, density, dimensional stability, and crystallinity) and mechanical (increased MOE/MOR and compression strength) properties than wood impregnated with a water solvent or untreated wood. The wood impregnated using WV and water solvent improved the physical and mechanical properties. The density of the wood increased by 44%-58% and 32%-47%, ASE radial-tangential increased by 38%-45%; 15%-28% after 24 h of water immersion, crystallinity increased by 59%-74%; 36%, MOE increased by 46%-57%; 28%-31%, MOR increased by 29%-34%; 14%-27%, and compression strength increased by 40%-76%; 38%-72% values to untreated wood.

Keywords

Acknowledgement

We would like to express our great appreciation to the Center for Standardization of Sustainable Forest Management Instruments (PUSTARHUT), the Ministry of Live Environment and Forestry, and the Directorate General of Higher Education under the Ministry of Education and Culture No. 15843/IT3. D10/PT.01.02/P/T/2023 for funding in this research. All the authors contributed equally to this study.

References

  1. American Society for Testing and Materials [ASTM]. 2022. Standard Test Methods for Small Clear Specimens of Timber. ASTM D143-22. ASTM International, West Conshohocken, PA, USA.
  2. Anonymous. 2015. Bahan kimia untuk home industri (chemicals for home industry). http://nizarnitisara.wordpress.com/2010/07/01/bahan-kimia-untuk-home-industri/
  3. Arsyad, W.O.M., Basri, E., Hendra, D., Trisatya, D.R. 2019. Termite resistance of impregnated jabon wood (Anthocephalus cadamba Miq.) with combined impregnant agents. Journal of the Korean Wood Science and Technology 47(4): 451-458. https://doi.org/10.5658/WOOD.2019.47.4.451
  4. Atkins, P.W. 1986. Physical Chemistry. W.H. Freeman, New York, NY, USA.
  5. Balfas, J. 2019. Impregnation of teak extract and resins in rubberwood and fast-grown teak wood. Journal of Tropical Forest Science 31(2): 189-199. https://doi.org/10.26525/jtfs2019.31.2.189199
  6. Basri, E., Balfas, J. 2015. Dimensional stability of fast-growing teak and jabon woods by chemical densification. Journal of Forest Products Research 33(4): 315-327.
  7. Basri, E., Damayanti, R., Darwis, A., Saefudin, Wahyudi, I. 2021. Anatomical properties of Hibiscus macrophyllus and its mature wood development. IAWA Journal 42(4): 475-485. https://doi.org/10.1163/22941932-bja10067
  8. Basri, E., Hanifah, N., Martha, R., Rahayu, I.S., Mubarok, M., Darmawan, W., Gerardin, P. 2022a. Effect of citric acid and benzophenone tetracarboxyclic acid treatments on stability, durability, and surface characteristic of short rotation teak. Forests 13(11): 1938.
  9. Basri, E., Yuniarti, K., Saefudin. 2022b. Thermal compression effect on several properties of 8-year-old waru gunung (Hibiscus macrophylllus) wood. Journal of Tropical Forest Science 34(1): 74-82. https://doi.org/10.26525/jtfs2022.34.1.74
  10. Blomquist, R.F., Christiansen, A.W., Gillespie, R.H., Myers, G.E. 1983. Adhesive Bonding of Wood and Other Structural Materials. Vol. III. Pennsylvania State University, State College, PA, USA.
  11. Budakci, M., Pelit, H., Sonmez, A., Korkmaz, M. 2016. The effects of densification and heat post-treatment on hardness and morphological properties of wood materials. BioResources 11(3): 7822-7838. https://doi.org/10.15376/biores.11.3.7822-7838
  12. Cahyani, N., Yunianti, A.D., Suhasman, Pangestu, K.T.P., Pari, G. 2023. Characteristics of bio pellets from spent coffee grounds and pinewood charcoal based on composition and grinding method. Journal of the Korean Wood Science and Technology 51(1): 23-37. https://doi.org/10.5658/WOOD.2023.51.1.23
  13. Choowang, R., Hiziroglu, S. 2015. Properties of thermally-compressed oil palm trunks "(Elaeis guineensis)". Journal of Tropical Forest Science 27(1): 39-46.
  14. Darwis, A., Wahyudi, I., Dwianto, W., Cahyono, T.D. 2017. Densified wood anatomical structure and the effect of heat treatment on the recovery of set. Journal of the Indian Academy of Wood Science 14: 24-31. https://doi.org/10.1007/s13196-017-0184-z
  15. Gerardin, P. 2016. New alternatives for wood preservation based on thermal and chemical modification of wood: A review. Annals of Forest Science 73: 559-570. https://doi.org/10.1007/s13595-015-0531-4
  16. Hadi, Y.S., Herliyana, E.N., Pari, G., Pari, R., Abdillah, I.B. 2022b. Furfurylation effects on discoloration and physical-mechanical properties of wood from tropical plantation forests. Journal of the Korean Wood Science and Technology 50(1): 46-58. https://doi.org/10.5658/WOOD.2022.50.1.46
  17. Hadi, Y.S., Hermawan, D., Abdillah, I.B., Mubarok, M., Arsyad, W.O.M., Pari, R. 2022a. Polystyrene-impregnated glulam resistance to subterranean termite attacks in a laboratory test. Polymers 14(19): 4003.
  18. Hill, C.A.S. 2006. Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons, West Sussex, UK.
  19. Hoadley, R.B. 2000. Understanding Wood: A Craftsman's Guide to Wood Technology. The Taunton Press, Newtown, CT, USA.
  20. Hosseinpourpia, R., Mai, C. 2016. Mode of action of brown rot decay resistance of acetylated wood: Resistance to Fenton's reagent. Wood Science and Technology 50: 413-426. https://doi.org/10.1007/s00226-015-0790-0
  21. Hwang, J.W., Park, H.J., Oh, S.W. 2021. Effect of resin impregnation ratio on the properties of ceramics made from Miscanthus sinensis var. purpurascens particle boards. Journal of the Korean Wood Science and Technology 49(4): 360-370. https://doi.org/10.5658/WOOD.2021.49.4.360
  22. Kementerian Lingkungan Hidup dan Kehutanan [KLHK]. 2021. Statistik Lingkungan Hidup dan Kehutanan 2020. Kementerian Lingkungan Hidup dan Kehutanan, Jakarta, Indonesia.
  23. Laksono, G.D., Rahayu, I.S., Karlinasari, L., Darmawan, W., Prihatini, E. 2023. Characteristics of magnetic sengon wood impregnated with nano Fe3O4 and furfuryl alcohol. Journal of the Korean Wood Science and Technology 51(1): 1-13. https://doi.org/10.5658/WOOD.2023.51.1.1
  24. Martha, R., Mubarok, M., Batubara, I., Rahayu, I.S., Setiono, L., Darmawan, W., Akong, F.O., George, B., Gerardin, C., Gerardin, P. 2021. Effect of furfurylation treatment on technological properties of short rotation teak wood. Journal of Materials Research and Technology 12: 1689-1699. https://doi.org/10.1016/j.jmrt.2021.03.092
  25. Ross, R. 2021. Wood Handbook: Wood as an Engineering Material. U.S. Department of Agriculture Forest Service, Madison, WI, USA. p. 543.
  26. Rowell, R.M. 2013. Handbook of Wood Chemistry and Wood Composites. 2nd ed. CRC Press, Boca Raton, FL, USA.
  27. Sandberg, D., Kutnar, A., Mantanis, G. 2017. Wood modification technologies: A review. iForest Biogeosciences and Forestry 10(6): 895-908. https://doi.org/10.3832/ifor2380-010
  28. Santoso, A., Basri, E., Balfas, J. 2020. Quality laminated wood with tannin adhesive from mahogany, bark extract. Journal of Forest Products Research 38(3): 151-160.
  29. Sjostrom, E. 1993. Wood Chemistry: Fundamentals and Applications. 2nd ed. Academic Press, Cambridge, MA, USA.
  30. Soenarno, S., Endom, W., Suhartana, S. 2018. The study on utilization and waste factors of timber harvesting at natural forest, West Papua. Journal of Forest Products Research 36(2): 67-84.
  31. Standar Nasional Indonesia [SNI]. 1998. Fenol Formaldehida Cair untuk Perekat Kayu Lapis. SNI 06-4567-1998. Badan Standardisasi Nasional, Jakarta, Indonesia.
  32. Suhartana, S., Yuniawati, Y. 2018. Pengaruh limbah pemanenan kayu terhadap efisiensi pemanfaatan kayu hutan produksi alam pada dua pengusahaan hutan di Kalimantan. Jurnal Ilmu Lingkungan 16(2): 147-154. https://doi.org/10.14710/jil.16.2.147-154
  33. Suheryanto, D. 2012. Pengaruh konsentrasi borak terhadap keawetan kayu karet. In: Surabaya, Indonesia, Proceedings of Seminar Nasional Teknik Kimia Soebardjo Brotohardjono IX: Pengelolaan Sumber Daya Alam Ramah Lingkungan Berbasis Efisiensi Energi.
  34. Tascioglu, C., Yalcin, M., de Troya, T., Sivrikaya, H. 2012. Termiticidal properties of some wood and bark extracts used as wood preservatives. BioResources 7(3): 2960-2969. https://doi.org/10.15376/biores.7.3.2960-2969
  35. Theapparat, Y., Chandumpai, A., Faroongsarng, D. 2018. Physicochemistry and Utilization of Wood Vinegar from Carbonization of Tropical Biomass Waste. In: Tropical Forest, Ed. by Sudarshana, P., Nageswara-Rao, M., and Soneji, J.R. IntechOpen, London, UK.
  36. Trisatya, D.R., Santoso, A., Abdurrachman, A., Prastiwi, D.A. 2023. Performance of six-layered cross laminated timber of fast-growing species glued with tannin resorcinol formaldehyde. Journal of the Korean Wood Science and Technology 51(2): 81-97. https://doi.org/10.5658/WOOD.2023.51.2.81
  37. Verdiana, M., Widarta, I.W.R., Permana, I.D.G.M. 2018. Pengaruh jenis pelarut pada ekstraksi menggunakan gelombang ultrasonik terhadap aktivitas antioksidan ekstrak kulit buah lemon (Citrus limon (Linn.) Burm F.). Jurnal Ilmu dan Teknologi Pangan 7(4): 213-222. https://doi.org/10.24843/itepa.2018.v07.i04.p08
  38. Vidaurre, G.B., Vital, B.R., Oliveira, A.D.C., Oliveira, J.T.D.S., Moulin, J.C., Silva, J.G.M.D., Soranso, D.R. 2018. Physical and mechanical properties of juvenile Schizolobium amazonicum wood. Revista Arvore 42(1): e420101.
  39. Wulandari, S. 2016. Karakterisasi Perekat Limbah Kulit Sapi. Undergraduate Thesis, Institut Pertanian Bogor, Indonesia.