DOI QR코드

DOI QR Code

Flexural Behavior of Laminated Wood Beams Strengthened with Novel Hybrid Composite Systems: An Experimental Study

  • Received : 2023.07.17
  • Accepted : 2023.11.08
  • Published : 2023.11.25

Abstract

Wooden structures are widely used, particularly in earthquake zones, owing to their light weight, ease of application, and resistance to the external environment. In this study, we aimed to improve the mechanical properties of laminated timber beams using novel hybrid systems [carbon-fiber-reinforced polymer (CFRP) and wire rope]. Within the scope of this study, it is expected that using wood, which is an environmentally friendly and sustainable building element, will be more economical and safe than the reinforced concrete and steel elements currently used to pass through wide openings. The structural behavior of the hybrid-reinforced laminated timber beams was determined under the loading system. The experimental findings showed that the highest increase in the values of laminated beams reinforced with steel ropes was obtained with the 2N reinforcement, with a maximum load of 38 kN and a displacement of 137 mm. Thus, a load increase of 168% and displacement increase of 275% compared with the reference sample were obtained. Compared with the reference sample, a load increase of 92% and a displacement increase of 14% were obtained. Carbon fabrics placed between the layers with fiber-reinforced polymer (FRP) prevented crack development and provided significant interlayer connections. Consequently, the fabrics placed between the laminated wooden beams with the innovative reinforcement system will not disrupt the aesthetics or reduce the effect of earthquake forces, and significant reductions can be achieved in these sections.

Keywords

Acknowledgement

The authors are grateful to the Inonu University Project of Scientific Investigation (PSI) for the financial support of this project (FYL-2022-2883).

References

  1. Abdulla, A.I., Mahmoud, R.T., Khazaal, A.S. 2020. Toughness of timber beams strengthened with jute fibers. Tikrit Journal of Engineering Sciences 27(3): 94-112. https://doi.org/10.25130/tjes.27.3.11
  2. Ahmed, S., Arocho, I. 2020. Mass timber building material in the U.S. construction industry: Determining the existing awareness level, construction-related challenges, and recommendations to increase its current acceptance level. Clean Engineering and Technology 1:100007.
  3. Akter, S.T., Bader, T.K. 2020. Experimental assessment of failure criteria for the interaction of normal stress perpendicular to the grain with rolling shear stress in Norway spruce clear wood. European Journal of Wood and Wood Products 78: 1105-1123. https://doi.org/10.1007/s00107-020-01587-w
  4. Ansell, M.P. 2015. Hybrid Wood Composites: Integration of Wood with Other Engineering Materials. In: Wood Composites, Ed. by Ansell, M.P. Elsevier, Amsterdam, Netherlands. pp. 411-426.
  5. Asdrubali, F., D'Alessandro, F., Schiavoni, S. 2015. A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies 4: 1-17. https://doi.org/10.1016/j.susmat.2015.05.002
  6. Asiz, A., Smith, I. 2009. Demands placed on steel frameworks of tall buildings having reinforced concrete or massive wood horizontal slabs. Structural Engineering International 19(4): 395-403. https://doi.org/10.2749/101686609789847000
  7. Borrega, M., Karenlampi, P.P. 2008. Mechanical behavior of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity. Holz als Rohund Werkstoff 66(1): 63-69. https://doi.org/10.1007/s00107-007-0207-3
  8. Borri, A., Corradi, M. 2011. Strengthening of timber beams with high strength steel cords. Composites Part B: Engineering 42(6): 1480-1491. https://doi.org/10.1016/j.compositesb.2011.04.051
  9. Bulleit, W.M., Sandberg, L.B., Woods, G.J. 1989. Steel-reinforced glued laminated timber. Journal of Structural Engineering 115(2): 433-444. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:2(433)
  10. Cai, Z., Ross, R.J. 2010. Mechanical Properties of Wood-based Composite Materials. In: Wood Handbook: Wood as an Engineering Material, Ed. by Ross, R. Department of Agriculture, Forest Service, Madison, WI, USA.
  11. Cha, M.S., Yoon, S.J., Kwon, J.H., Byeon, H.S., Park, H.M. 2022. Mechanical properties of cork composite boards reinforced with metal, glass fiber, and carbon fiber. Journal of the Korean Wood Science and Technology 50(6): 427-435. https://doi.org/10.5658/WOOD.2022.50.6.427
  12. Choi, G.W., Yang, S.M., Lee, H.J., Kim, J.H., Choi, K.H., Kang, S.G. 2021. Evaluation of flexural performance according to the plywood bonding method of ply-lam CLT. Journal of the Korean Wood Science and Technology 49(2): 107-121. https://doi.org/10.5658/WOOD.2021.49.2.107
  13. Corradi, M., Borri, A., Righetti, L., Speranzini, E. 2017. Uncertainty analysis of FRP reinforced timber beams. Composites Part B: Engineering 113: 174-184. https://doi.org/10.1016/j.compositesb.2017.01.030
  14. Corradi, M., Mouli Vemury, C., Edmondson, V., Poologanathan, K., Nagaratnam, B. 2021. Local FRP reinforcement of existing timber beams. Composite Structures 258: 113363.
  15. Crowther, P. 1999. Historic trends in building disassembly. In: Montreal, QC, Canada, Proceedings of ACSA/CIB 1999 International Science and Technology Conference.
  16. de la Rosa Garcia, P., Escamilla, A.C., Garcia, M.N.G. 2013. Bending reinforcement of timber beams with composite carbon fiber and basalt fiber materials. Composites Part B: Engineering 55: 528-536. https://doi.org/10.1016/j.compositesb.2013.07.016
  17. de Moura, M.F.S.F., Morais, J.J.L., Dourado, N. 2008. A new data reduction scheme for mode I wood fracture characterization using the double cantilever beam test. Engineering Fracture Mechanics 75(13): 3852-3865. https://doi.org/10.1016/j.engfracmech.2008.02.006
  18. de Moura, M.F.S.F., Silva, M.A.L., de Morais, A.B., Morais, J.J.L. 2006. Equivalent crack based mode II fracture characterization of wood. Engineering Fracture Mechanics 73(8): 978-993. https://doi.org/10.1016/j.engfracmech.2006.01.004
  19. Dias, A., Skinner, J., Crews, K., Tannert, T. 2016. Timber-concrete-composites increasing the use of timber in construction. European Journal of Wood and Wood Products 74: 443-451. https://doi.org/10.1007/s00107-015-0975-0
  20. Dominguez-Santos, D., Mora-Melia, D., Pincheira-Orellana, G., Ballesteros-Perez, P., Retamal-Bravo, C. 2019. Mechanical properties and seismic performance of wood-concrete composite blocks for building construction. Materials 12(9): 1500. https://doi.org/10.3390/ma12091500
  21. Falk, A. 2005. Architectural aspects of massive timber: Structural form and systems. https://www.diva-portal.org/smash/get/diva2:999695/FULLTEXT01.pdf
  22. Falk, R.H., 2009. Wood as a sustainable building material. Forest Products Journal 59(9): 6-12.
  23. Fragiacomo, M., Dujic, B., Sustersic, I. 2011. Elastic and ductile design of multi-storey crosslam massive wooden buildings under seismic actions. Engineering Structures 33(11): 3043-3053. https://doi.org/10.1016/j.engstruct.2011.05.020
  24. Frangi, A., Fontana, M., Hugi, E., Jubstl, R. 2009. Experimental analysis of cross-laminated timber panels in fire. Fire Safety Journal 44(8): 1078-1087. https://doi.org/10.1016/j.firesaf.2009.07.007
  25. Ghanbari-Ghazijahani, T., Russo, T., Valipour, H.R. 2020. Lightweight timber I-beams reinforced by composite materials. Composite Structures 233: 111579. https://doi.org/10.1016/j.compstruct.2019.111579
  26. Gribanov, A., Glebova, T., Roschina, S. 2020. Restoration of destructive wood in supporting zones of wooden beams. Lecture Notes in Civil Engineering 70: 157-166.
  27. Hadi, Y.S., Massijaya, M.Y., Abdillah, I.B., Pari, G., Arsyad, W.O.M. 2020. Color change and resistance to subterranean termite attack of mangium (Acacia mangium) and sengon (Falcataria moluccana) smoked wood. Journal of the Korean Wood Science and Technology 48(1): 1-11. https://doi.org/10.5658/WOOD.2020.48.1.1
  28. Herzog, T., Natterer, J., Schweitzer, R., Volz, M. Winter, W. 2012. Timber Construction Manual. Walter de Gruyter, Berlin, Germany.
  29. Hoyle, R.J. 1975. Steel-reinforced wood beam design. Forest Product Journal 25(4): 17-23.
  30. Huang, C.L., Lindstrom, H., Nakada, R., Ralston, J. 2003. Cell wall structure and wood properties determined by acoustics: A selective review. Holz als Rohund Werkstoff 61: 321-335. https://doi.org/10.1007/s00107-003-0398-1
  31. Isleyen, u.K., Ghoroubi, R., Mercimek, O., Anil, O., Erdem, R.T. 2021. Behavior of glulam timber beam strengthened with carbon fiber reinforced polymer strip for flexural loading. Journal of Reinforced Plastics and Composites 40(17-18): 665-685. https://doi.org/10.1177/0731684421997924
  32. Jasienko, J., Nowak, T.P. 2014. Solid timber beams strengthened with steel plates: Experimental studies. Construction and Building Materials 63: 81-88. https://doi.org/10.1016/j.conbuildmat.2014.04.020
  33. Kantarci, M., Maras, M.M., Ayaz, Y. 2023. Experimental performance of RC beams strengthened with aluminum honeycomb sandwich composites and CFRP U-jackets. Experimental Techniques 47: 767-786. https://doi.org/10.1007/s40799-022-00589-y
  34. Kasal, B., Drdacky, M., Jirovsky, I. 2003. Semi-destructive Methods for Evaluation of Timber Structures. In: Structural Studies, Repairs and Maintenance of Heritage Architecture VIII, Ed. by Brebia, C.A. WIT Press, Southampton, UK.
  35. Khelifa, M., Auchet, S., Meausoone, P.J., Celzard, A. 2015. Finite element analysis of flexural strengthening of timber beams with carbon fibre-reinforced polymers. Engineering Structures 101: 364-375. https://doi.org/10.1016/j.engstruct.2015.07.046
  36. Kim, K.H., Hong, S.I. 2011. Bonding performance of glulam reinforced with textile type of glassand aramid-fiber, GFRP and CFRP. Journal of the Korean Wood Science and Technology 39(2): 156-162. https://doi.org/10.5658/WOOD.2011.39.2.156
  37. Klasson, A., Crocetti, R., Bjornsson, I., Fruhwald Hansson, E. 2018. Design for lateral stability of slender timber beams considering slip in the lateral bracing system. Structures 16: 157-163. https://doi.org/10.1016/j.istruc.2018.09.007
  38. Kurtoglu, A., Zorlu, A. 1979. Bonded stratified wood materials. Journal of the Faculty of Forestry Istanbul University 2(1):65-69.
  39. Lee, H.W., Jang, S.S. 2023. Bending properties of parallel chord truss with steel-web members. Journal of the Korean Wood Science and Technology 51(3): 197-206. https://doi.org/10.5658/WOOD.2023.51.3.197
  40. Lee, I.H., Song, Y.J., Song, D.B., Hong, S.I. 2019. Results of delamination tests of FRP- and steel-plate-reinforced larix composite timber. Journal of the Korean Wood Science and Technology 47(5): 655-662. https://doi.org/10.5658/WOOD.2019.47.5.655
  41. Lestari, A.S.R.D., Hadi, Y.S., Hermawan, D., Santoso, A. 2018. Physical and mechanical properties of glued laminated lumber of pine (Pinus merkusii) and jabon (Anthocephalus cadamba). Journal of the Korean Wood Science and Technology 46(2): 143-148. https://doi.org/10.5658/WOOD.2018.46.2.143
  42. Ling, Z., Liu, W., Shao, J. 2020. Experimental and theoretical investigation on shear behaviour of small-scale timber beams strengthened with fiber-reinforced polymer composites. Composite Structures 240: 111989. https://doi.org/10.1016/j.compstruct.2020.111989
  43. Maier, D. 2021. Building materials made of wood waste a solution to achieve the sustainable development goals. Materials 14(24): 7638.
  44. Maras, M.M. 2021. Characterization of performable geopolymer mortars for use as repair material. Structural Concrete 22(5): 3173-3188. https://doi.org/10.1002/suco.202100355
  45. Maras, M.M., Kantarci, F. 2021. Structural performance of reinforced concrete (RC) moment frame connections strengthened using FRP composite jackets. Arabian Journal for Science and Engineering 46: 10975-10992. https://doi.org/10.1007/s13369-021-06120-6
  46. Munch, E., Launey, M. E., Alsem, D.H., Saiz, E., Tomsia, A.P., Ritchie, R.O. 2008. Tough, bio-inspired hybrid materials. Science 322(5907): 1516-1520. https://doi.org/10.1126/science.1164865
  47. Nowak, T. 2007. Analysis of the static work of bent wooden beams reinforced with CFRP (in Polish). Ph.D. Thesis, Technical University of Wroclaw, Poland.
  48. Nurdiah, E.A. 2016. The potential of bamboo as building material in organic shaped buildings. Procedia - Social and Behavioral Sciences 216: 30-38. https://doi.org/10.1016/j.sbspro.2015.12.004
  49. Pei, S., van de Lindt, J.W., Popovski, M., Berman, J.W., Dolan, J.D., Ricles, J., Sause, R., Blomgren, H., Rammer, D.R. 2016. Cross-laminated timber for seismic regions: Progress and challenges for research and implementation. Journal of Structural Engineering 142(4): E2514001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001192
  50. Philbin, P., Gordon, S. 2006. Recent research on the machining of wood-based composite materials. International Journal of Machining and Machinability of Materials 1(2): 186-201. https://doi.org/10.1504/IJMMM.2006.011068
  51. Raftery, G.M., Whelan, C. 2014. Low-grade glued laminated timber beams reinforced using improved arrangements of bonded-in GFRP rods. Construction and Building Materials 52: 209-220. https://doi.org/10.1016/j.conbuildmat.2013.11.044
  52. Ramage, M.H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D.U., Wu, G., Yu, L., Fleming, P., Densley-Tingley, D., Allwood, J., Dupree, P., Linden, P.F., Scherman, O. 2017. The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews 68(1): 333-359. https://doi.org/10.1016/j.rser.2016.09.107
  53. Rescalvo, F.J., Suarez, E., Abarkane, C., Cruz-Valdivieso, A., Gallego, A. 2018a. Experimental validation of a CFRP laminated/fabric hybrid layout for retrofitting and repairing timber beams. Mechanics of Advanced Materials and Structures 26(22): 1902-1909. https://doi.org/10.1080/15376494.2018.1455940
  54. Rescalvo, F.J., Valverde-Palacios, I., Suarez, E., Gallego, A. 2017. Experimental comparison of different carbon fiber composites in reinforcement layouts for wooden beams of historical buildings. Materials 10(10): 1113. https://doi.org/10.3390/ma10101113
  55. Rescalvo, F.J., Valverde-Palacios, I., Suarez, E., Gallego, A. 2018b. Experimental and analytical analysis for bending load capacity of old timber beams with defects when reinforced with carbon fiber strips. Composite Structures 186: 29-38. https://doi.org/10.1016/j.compstruct.2017.11.078
  56. Saad, K., Lengyel, A. 2022. Strengthening timber structural members with CFRP and GFRP: A state-of-the-art review. Polymers 14(12): 2381.
  57. Schmid, J., Brandon, D., Werther, N., Klippel, M. 2019. Technical note: Thermal exposure of wood in standard fire resistance tests. Fire Safety Journal 107: 179-185. https://doi.org/10.1016/j.firesaf.2018.02.002
  58. Soderholm, K.J. 2010. Review of the fracture toughness approach. Dental Materials 26(2): e63-e77. https://doi.org/10.1016/j.dental.2009.11.151
  59. Song, D.B., Kim, K.H. 2023. Influence of composition of layer layout on bending and compression strength performance of larix cross-laminated timber (CLT). Journal of the Korean Wood Science and Technology 51(4): 239-252. https://doi.org/10.5658/WOOD.2023.51.4.239
  60. Song, Y.J., Hong, S.I., Suh, J.S., Park, S.B. 2017. Strength performance evaluation of moment resistance for cylindrical-LVL column using GFRP reinforced wooden pin. Wood Research 62(3): 417-426.
  61. Sumardi, I., Alamsyah, E.M., Suhaya, Y., Dungani, R., Sulastiningsih, I.M., Pramestie, S.R. 2022. Development of bamboo zephyr composite and the physical and mechanical properties. Journal of the Korean Wood Science and Technology 50(2): 134-147. https://doi.org/10.5658/WOOD.2022.50.2.134
  62. Todoroki, C.L., Ronnqvist, E.M. 1999. Combined primary and secondary log breakdown optimisation. Journal of the Operational Research Society 50(3): 219-229. https://doi.org/10.1057/palgrave.jors.2600699
  63. Vahedian, A., Shrestha, R., Crews, K. 2019. Experimental and analytical investigation on CFRP strengthened glulam laminated timber beams: Full-scale experiments. Composites Part B: Engineering 164: 377-389. https://doi.org/10.1016/j.compositesb.2018.12.007
  64. Valdes, M., Giaccu, G.F., Meloni, D., Concu, G. 2020. Reinforcement of maritime pine cross-laminated timber panels by means of natural flax fibers. Construction and Building Materials 233: 117741. https://doi.org/10.1016/j.conbuildmat.2019.117741
  65. Valluzzi, M.R., Garbin, E., Modena, C. 2007. Flexural strengthening of timber beams by traditional and innovative techniques. Journal of Building Appraisal 3: 125-143. https://doi.org/10.1057/palgrave.jba.2950071
  66. Wei, Y., Chen, S., Tang, S., Peng, D., Zhao, K. 2022. Mechanical response of timber beams strengthened with variable amounts of CFRP and bamboo scrimber layers. Journal of Composites for Construction 26(4): 04022038. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001228
  67. Yang, S.M., Lee, H.H., Kang, S.G. 2021. Research trends in hybrid cross-laminated timber (CLT) to enhance the rolling shear strength of CLT. Journal of the Korean Wood Science and Technology 49(4): 336-359. https://doi.org/10.5658/WOOD.2021.49.4.336
  68. Yang, X., Yang, Z., Wen, Q. 2014. Bending of simply-supported circular timber beam strengthened with fiber reinforced polymer. Applied Mathematics and Mechanics 35(3): 297-310. https://doi.org/10.1007/s10483-014-1792-x
  69. Yang, Y., Liu, J., Xiong, G. 2013. Flexural behavior of wood beams strengthened with HFRP. Construction and Building Materials 43: 118-124. https://doi.org/10.1016/j.conbuildmat.2013.01.029
  70. Yilmaz, H., Yildirim, K., Hidayetoglu, M.L. 2022. The effect of carrier system materials used in an Olympic swimming pool on the perceptual evaluations of respondents. Facilities 40(9/10): 675-695. https://doi.org/10.1108/F-11-2021-0117
  71. Yu, Z.L., Qin, B., Ma, Z.Y., Gao, Y.C., Guan, Q.F., Yang, H.B., Yu, S.H. 2021. Emerging bioinspired artificial woods. Advances Materials 33(28): 2001086. https://doi.org/10.1002/adma.202001086