DOI QR코드

DOI QR Code

Effects of Pretreatment for Controlling Internal Water Transport Direction on Moisture Content Profile and Drying Defects in Large-Cross-Section Red Pine Round Timber during Kiln Drying

  • Bat-Uchral BATJARGAL (Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Taekyeong LEE (Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Myungsik CHO (Department of Forest Sciences, Seoul National University) ;
  • Chang-Jin LEE (Department of Wood Science and Technology, Jeonbuk National University) ;
  • Hwanmyeong YEO (Research Institute of Agriculture and Life Sciences, Seoul National University)
  • Received : 2023.09.18
  • Accepted : 2023.11.06
  • Published : 2023.11.25

Abstract

Round timber materials of 600 mm length, cut from large-cross-section round timber of red pine (Pinus densiflora S. et Z.) of 450 mm width and 4.2 m length, were prepared as the target of kiln drying in this study. After treating the target materials through end sealing (ES), end sealing - kerfing (ES-K), lateral sealing - end sealing - boring (LS-ES-B), or lateral sealing - partial end sealing (LS-PES), the effects of the treatment on the incidence of drying defects were determined. The target materials with exposed lateral surface and sealed cross surface were steamed at the initial temperature of 65℃ above the official pest control temperature of 56℃, followed by kiln drying toward the final temperature of 75℃. The target materials with sealed lateral surfaces, on the other hand, were dried at the initial temperature of 90℃ at almost the maximum temperature of conventional kiln drying, as there is no risk of early check formation caused by surface moisture evaporation. The final temperature was set at approximately 100℃. The drying time, taken for the target materials with initial moisture content of 70%-80% to reach the target moisture content of 19%, varied across treatment conditions. The measured drying time was 1,146 hours (approximately 48 days) for the timber with sealed cross surface and 745 hours (approximately 31 days) for the timber with sealed lateral surface, until the moisture content reached the target level. The formation of surface checks could not be prevented in the control and ES groups, but a definite preventive effect was obtained for the LS-ES-B and LS-PES groups.

Keywords

Acknowledgement

This study was supported by the National Research Institute of Cultural Heritage through the program funded by the Cultural Heritage Administration (Project No. 2023A01D01-001-1).

References

  1. Diawanich, P., Tomad, S., Matan, N., Kyokong, B. 2012. Novel assessment of casehardening in kiln-dried lumber. Wood Science Technology 46: 101-114.  https://doi.org/10.1007/s00226-010-0384-9
  2. Han, Y., Chang, Y.S., Eom, C.D., Lee, S.M. 2019a. Moisture content change of Korean red pine logs during air drying: II. Prediction of moisture content change of Korean red pine logs under different air drying conditions. Journal of the Korean Wood Science and Technology 47(6): 732-750.  https://doi.org/10.5658/WOOD.2019.47.6.732
  3. Han, Y., Eom, C.D., Lee, S.M., Park, Y. 2019b. Moisture content change of Korean red pine logs during air drying: I. Effective air drying days in major regions in Korea. Journal of the Korean Wood Science and Technology 47(6): 721-731.  https://doi.org/10.5658/WOOD.2019.47.6.721
  4. Hwang, K.H., Lee, W.H. 1995. Estimation of the moisture content of wood by density: Moisture variation with annual ring width. Journal of the Korean Wood Science and Technology 23(3): 58-65. 
  5. Hwang, S.W., Chung, H., Lee, T., Ahn, K.S., Pang, S.J., Bang, J., Kwak, H.W., Oh, J.K., Yeo, H. 2022. Monitoring of moisture and dimensional behaviors of nail-laminated timber (NLT)-concrete slab exposed to outdoor air. Journal of the Korean Wood Science and Technology 50(5): 301-314.  https://doi.org/10.5658/WOOD.2022.50.5.301
  6. Jang, E.S. 2022. Use of pine (Pinus densiflora) pollen cones as an environmentally friendly sound-absorbing material. Journal of the Korean Wood Science and Technology 50(3): 186-192.  https://doi.org/10.5658/WOOD.2022.50.3.186
  7. Jiang, Z., Yamamoto, H., Matsuo-Ueda, M., Yoshida, M., Dohi, M., Tanaka, K., Konishi, H. 2023. Effect of high temperature drying with load on reduction of residual stress and correction of warp of Japanese cedar lumber. Drying Technology 41(1): 3-16.  https://doi.org/10.1080/07373937.2022.2080219
  8. Jung, J.Y., Ha, S.Y., Yang, J.K. 2022. Effect of steam explosion condition on the improvement of physicochemical properties of pine chips for feed additives. Journal of the Korean Wood Science and Technology 50(1): 59-67.  https://doi.org/10.5658/WOOD.2022.50.1.59
  9. Kang, C.W., Li, C., Sun, Y.X. 2020. Determination of high-temperature and low-humidity treatment time for larch boxed-heart timber. Journal of Wood Science 66(22): 1-4.  https://doi.org/10.1186/s10086-020-1848-7
  10. Kim, H., Han, Y., Park, Y., Yang, S.Y., Chung, H., Eom, C.D., Lee, H.M., Yeo, H. 2017. Finite difference evaluation of moisture profile in boxed-heart large-cross-section square timber of Pinus densiflora during high temperature drying. Journal of the Korean Wood Science and Technology 45(6): 762-771.  https://doi.org/10.5658/WOOD.2017.45.6.762
  11. Kim, J.H., Yang, S.M., Lee, H.J., Park, K.H., Kang, S.G. 2020. A study on the evaluation and improvement of permeability in radial and tangential section of domestic softwoods. Journal of the Korean Wood Science and Technology 48(6): 832-846.  https://doi.org/10.5658/WOOD.2020.48.6.832
  12. Korea Standard. 2022. Determination of moisture content of wood (KS F 2199). https://standard.go.kr/KSCI/standardIntro/getStandardSearchView 
  13. Lee, C.J. 2020. Effect of kerfing and incising pretreatments on high-temperature drying characteristics of cedar and larch boxed-heart timbers with less than 150 mm in cross section size. Journal of the Korean Wood Science and Technology 48(3): 345-363.  https://doi.org/10.5658/WOOD.2020.48.3.345
  14. Lee, C.J., Eom, C.D. 2021. Effects of knife-incising and longitudinal kerfing pretreatments on high-temperature drying of red pine and pitch pine timbers. BioResources 16(4): 8184-8196.  https://doi.org/10.15376/biores.16.4.8184-8196
  15. Lee, C.J., Oh, S.W., Lee, N.H., Kang, C.W. 2017. Effect of the knife-incising pretreatment on the surface checks occurrence of red pine heavy timber after drying. European Journal of Wood and Wood Products 75: 143-145.  https://doi.org/10.1007/s00107-016-1107-1
  16. Lee, I.H., Kim, K., Shim, K. 2022. Evaluation of bearing strength of self-tapping screws according to the grain direction of domestic Pinus densiflora. Journal of the Korean Wood Science and Technology 50(1): 1-11.  https://doi.org/10.5658/WOOD.2022.50.1.1
  17. Lee, K.H., Lee, U.C., Kang, P.W., Kim, S.C. 2021a. Analysis and tree-ring dating of wooden coffins excavated from Incheon Sipjeong-dong site. Journal of the Korean Wood Science and Technology 49(1): 67-81.  https://doi.org/10.5658/WOOD.2021.49.1.67
  18. Lee, K.H., Park, C.H., Kim, S.C. 2021b. Species identification and tree-ring dating of the wooden elements used in Juheulgwan of Joryeong (gate no.1), Mungyeong, Korea. Journal of the Korean Wood Science and Technology 49(6): 550-565.  https://doi.org/10.5658/WOOD.2021.49.6.550
  19. Lee, N.H., Lee, C. 2023. Effects of pre-steaming treatment on high-temperature and low-humidity drying characteristics of super-heavy timber with boxed-heart of Korean red pine and Douglas-fir. Drying Technology 41(5): 794-803.  https://doi.org/10.1080/07373937.2022.2119246
  20. Matsuo-Ueda, M., Tsunezumi, T., Jiang, Z., Yoshida, M., Yamashita, K., Matsuda, Y., Matsumura, Y., Ikami, Y., Yamamoto, H. 2022. Comprehensive study of distributions of residual stress and Young's modulus in large-diameter sugi (Cryptomeria japonica) log. Wood Science and Technology 56: 573-588.  https://doi.org/10.1007/s00226-022-01360-7
  21. Moya, R., Tenorio, C. 2022. Application of the steaming step during kiln drying of lumber of two tropical species with high growth stress presence. Drying Technology 40(15): 3231-3240.  https://doi.org/10.1080/07373937.2021.2017299
  22. Nam, T.G., Kim, H.S. 2021. A fundamental study of the silla shield through the analysis of the shape, dating, and species identification of wooden shields excavated from the ruins of Wolseong moat in Gyeongju. Journal of the Korean Wood Science and Technology 49(2): 154-168.  https://doi.org/10.5658/WOOD.2021.49.2.154
  23. Park, J.H., Park, Y., Han, Y., Choi, J.W., Choi, I.G., Lee, J.J., Yeo, H. 2014. Effect of outer surface sealing treatment on the reduction of surface check occurrence during the drying of center-bored round timber. Drying Technology 32(2): 236-243.  https://doi.org/10.1080/07373937.2013.821995
  24. Park, Y., Chung, H., Kim, H., Yeo, H. 2020. Applicability of continuous process using saturated and superheated steam for boxed heart square timber drying. Journal of the Korean Wood Science and Technology 48(2): 121-135.  https://doi.org/10.5658/WOOD.2020.48.2.121
  25. Ra, J.B. 2014. Determination of equilibrium moisture content of outdoor woods by using Hailwood-Horrobin equation in Korea. Journal of the Korean Wood Science and Technology 42(6): 653-658.  https://doi.org/10.5658/WOOD.2014.42.6.653
  26. Sutapa, J.P.G., Hidyatullah, A.H. 2023. Torrefaction for improving quality of pellets derived from calliandra wood. Journal of the Korean Wood Science and Technology 51(5): 381-391.  https://doi.org/10.5658/WOOD.2023.51.5.381
  27. Toba, K., Nakai, T., Murano, T. 2023. Temporal changes in strain condition on all laterial surfaces during pretreatment before timber drying. BioResources 18(3): 4450-4457.  https://doi.org/10.15376/biores.18.3.4450-4457
  28. Yamamoto, H., Matsuo-Ueda, M., Tsunezumi, T., Yoshida, M., Yamashita, K., Matsumura, Y., Matsuda, Y., Ikami, Y. 2021. Effect of residual stress distribution in a log on lumber warp due to sawing: A numerical simulation based on the beam theory. Wood Science and Technology 55: 125-153.  https://doi.org/10.1007/s00226-020-01240-y