DOI QR코드

DOI QR Code

Natural Dye Extraction from Merbau (Intsia bijuga) Sawdust: Optimization of Solid-Solvent Ratio and Temperature

  • Aswati MINDARYANI (Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada) ;
  • Ali SULTON (Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada) ;
  • Felix Arie SETIAWAN (Department of Chemical Engineering, Faculty of Engineering, University of Jember) ;
  • Edia RAHAYUNINGSIH (Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada)
  • Received : 2023.08.18
  • Accepted : 2023.10.13
  • Published : 2023.11.25

Abstract

The ecofriendly lifestyle has attracted considerable support for sustainable development. Natural dyes, as sustainable products, have become a research focus and development area for many scientists. Ecofriendly processing also supports circular sustainable development. This study effectively obtained tannins as a natural dye from merbau (Intsia bijuga) sawdust using water as an ecofriendly solvent. Merbau sawdust is an underutilized industrial waste. Temperature and solid-solvent ratio variations were performed to extract tannins from merbau sawdust. Temperature and solid-solvent ratio positively affected solution yield and tannin concentration. The optimal condition was identified using response surface methodology and experimental observations. A yield of 0.2217 g tannins/g merbau was obtained under the conditions of 333.15 K and 0.125 solid-solvent ratio. Extraction was controlled by convective mass transfer at the interface of solid particles.

Keywords

Acknowledgement

The authors acknowledge the support of the Chemical Engineering Department, Universitas Gadjah Mada, for the laboratory facilities provided in this research. This research is supported by the Research Funding Scheme of Penelitian Pengembangan Unggulan Perguruan Tinggi 2020-2022 under the contract number 1699/UN1/DITLIT/Dit-Lit/PT.01.03/2022 from the Directorate General of Higher Education.

References

  1. Agarry, S.E., Ogunleye, O.O. 2012. Factorial designs application to study enhanced bioremediation of soil artificially contaminated with weathered bonny light crude oil through biostimulation and bioaugmentation strategy. Journal of Environmental Protection 3(8): 748-759. https://doi.org/10.4236/jep.2012.38089
  2. Aguilar, C.N., Rodriguez, R., Gutierrez-Sanchez, G., Augur, C., Favela-Torres, E., Prado-Barragan, L.A., Ramirez-Coronel, A., Contreras-Esquivel, J.C. 2007. Microbial tannases: Advances and perspectives. Applied Microbiology and Biotechnology 76(1): 47-59. https://doi.org/10.1007/s00253-007-1000-2
  3. Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5): 965-977. https://doi.org/10.1016/j.talanta.2008.05.019
  4. Cuong, X.D., Hoan, N.X., Dong, D.H., Thuy, L.T.M., Thanh, N.V., Ha, H.T., Tuyen, D.T.T., Chinh, D.X. 2020. Tannins: Extraction from Plants. In: Tannins: Structural Properties, Biological Properties and Current Knowledge, Ed. by Aires, A. IntechOpen, London, UK.
  5. Fraga-Corral, M., Garcia-Oliveira, P., Pereira, A.G., Lourenco-Lopes, C., Jimenez-Lopez, C., Prieto, M.A., Simal-Gandara, J. 2020. Technological application of tannin-based extracts. Molecules 25(3): 614.
  6. Ha, S.Y., Jung, J.Y., Yang, J.K. 2020. Effect of light-emitting diodes on cordycepin production in submerged culture of Paecilomyces japonica. Journal of the Korean Wood Science and Technology 48(4): 548-561. https://doi.org/10.5658/WOOD.2020.48.4.548
  7. Haji, A., Mehrizi, M.K., Sharifzadeh, J. 2016. Dyeing of wool with aqueous extract of cotton pods improved by plasma treatment and chitosan: Optimization using response surface methodology. Fibers and Polymers 17: 1480-1488. https://doi.org/10.1007/s12221-016-6457-0
  8. Hendrik, J., Hadi, Y.S., Massijaya, M.Y., Santoso, A., Pizzi, A. 2019. Properties of glued laminated timber made from fast-growing species with mangium tannin and phenol resorcinol formaldehyde adhesives. Journal of the Korean Wood Science and Technology 47(3): 253-264. https://doi.org/10.5658/WOOD.2019.47.3.253
  9. Ju, S.G., Roh, J. 2020. Manufacturing regenerated woody dyed fiber from waste MDF using natural dyes. Journal of the Korean Wood Science and Technology 48(2): 154-165. https://doi.org/10.5658/WOOD.2020.48.2.154
  10. Jung, J.Y., Ha, S.Y., Yang, J.K. 2017. Response surface optimization of phenolic compounds extraction from steam exploded oak wood (Quercus mongolica). Journal of the Korean Wood Science and Technology 45(6): 809-827. https://doi.org/10.5658/WOOD.2017.45.6.809
  11. Jung, J.Y., Yang, J.K. 2018. A two-stage process for increasing the yield of prebiotic-rich extract from Pinus densiflora. Journal of the Korean Wood Science and Technology 46(4): 380-392. https://doi.org/10.5658/WOOD.2018.46.4.380
  12. Kiumarsi, A., Parvinzadeh Gashti, M., Salehi, P., Dayeni, M. 2017. Extraction of dyes from Delphinium Zalil flowers and dyeing silk yarns. The Journal of the Textile Institute 108(1): 66-70. https://doi.org/10.1080/00405000.2016.1153865
  13. Malik, J., Santoso, M., Mulyana, Y., Ozarska, B. 2016. Characterization of merbau extractives as a potential wood-impregnating material. BioResources 11(3): 7737-7753. https://doi.org/10.15376/biores.11.3.7737-7753
  14. Mansour, R., Ezzili, B., Farouk, M. 2017. The use of response surface method to optimize the extraction of natural dye from winery waste in textile dyeing. The Journal of the Textile Institute 108(4): 528-537. https://doi.org/10.1080/00405000.2016.1172821
  15. Mohajeri, L., Aziz, H.A., Isa, M.H., Zahed, M.A. 2010. A statistical experiment design approach for optimizing biodegradation of weathered crude oil in coastal sediments. Bioresource Technology 101(3): 893-900. https://doi.org/10.1016/j.biortech.2009.09.013
  16. Montgomery, D.C. 2017. Design and Analysis of Experiments. John Wiley & Sons, Hoboken, NJ, USA.
  17. Mun, J.S., Kim, H.C., Mun, S.P. 2020. Chemical characterization of neutral extracts prepared by treating Pinus radiata bark with sodium bicarbonate. Journal of the Korean Wood Science and Technology 48(6): 878-887. https://doi.org/10.5658/WOOD.2020.48.6.878
  18. Mun, J.S., Kim, H.C., Mun, S.P. 2021. Potential of neutral extract pepared by treating Pinus radiata bark with NaHCO3 as a dyestuff. Journal of the Korean Wood Science and Technology 49(2): 134-141. https://doi.org/10.5658/WOOD.2021.49.2.134
  19. Parvinzadeh Gashti, M., Katozian, B., Shaver, M., Kiumarsi, A. 2014. Clay nanoadsorbent as an environmentally friendly substitute for mordants in the natural dyeing of carpet piles. Coloration Technology 130(1): 54-61. https://doi.org/10.1111/cote.12065
  20. Prasetya, A., Siagian, H., Setiawan, F.A., Petrus, H.T.B.M. 2021. Densification process of Merbau (Intsia bijuga) and Matoa (Pometia pinnata J.R. Forster & J.G. Forster) sawdust waste for biomass based solid fuel source in West Papua Indonesia: Optimization using response surface methodology (RSM). Jurnal Rekayasa Proses 15(1): 116-130. https://doi.org/10.22146/jrekpros.66024
  21. Rahayuningsih, E., Rahayu, S.S., Raharjo, T.J. 2011. The potential of sawdust as raw material for the production of natural dye. In: Sydney, Australia, Proceedings of Chemeca 2011: Engineering a Better World: Sydney Hilton Hotel, NSW, Australia, 18-21 September 2011, pp. 2065-2074.
  22. Rahayuningsih, E., Setiawan, F.A., Ayanie, C.J., Antoko, A.A., Ayuningtyas, Y.I., Petrus, H.B. 2019. Optimization model on the effect of clove oil, formaldehyde, and chitosan added to batik fabric colored with gambier (Uncaria gambir Roxb): Antifungal properties and stability. Indonesian Journal of Chemistry 20(1): 210-222. https://doi.org/10.22146/ijc.46038
  23. Rahayuningsih, E., Setiawan, F.A., Rahman, A.B.K., Siahaan, T., Petrus, H.T.B.M. 2021. Microencapsulation of betacyanin from red dragon fruit (Hylocereus polyrhizus) peels using pectin by simple coacervation to enhance stability. Journal of Food Science and Technology 58(9): 3379-3387. https://doi.org/10.1007/s13197-020-04910-8
  24. Roh, J., Jo, H.J. 2022. Dyeing and color fastness properties of natural dyed actual size hanji. Journal of the Korean Wood Science and Technology 50(1): 31-45. https://doi.org/10.5658/WOOD.2022.50.1.31
  25. Sari, R.K., Prayogo, Y.H., Sari, R.A.L., Asidah, N., Rafi, M., Wientarsih, I., Darmawan, W. 2021. Intsia bijuga heartwood extract and its phytosome as tyrosinase inhibitor, antioxidant, and sun protector. Forests 12(12): 1792.
  26. Simeonov, E., Koleva, V. 2012. Solid-liquid extraction of tannins from Geranium sanguineum L.: Experimental kinetics and modelling. Chemical and Biochemical Engineering Quarterly 26(3): 249-255.
  27. Stefanova, G.L., Tasheva, S.T., Damyanova, S.T., Stoyanova, A.S. 2017. Coeffiicient of diffusion of tannins in extracts from laurel leaves (Laurus nobilis L.). Scientific Works of University of Food Technologies 64(1):75-79.
  28. Sun, Y., Liu, D., Chen, J., Ye, X., Yu, D. 2011. Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-β-carotene from citrus peels. Ultrasonics Sonochemistry 18(1): 243-249. https://doi.org/10.1016/j.ultsonch.2010.05.014
  29. Tasheva, S.T., Ivanova, T.A., Popova, V.T., Iliev, I.Z., Stankov, S.S., Fidan, H.N., Mazova, N.N., Stoyanova, A.S. 2019. Coefficient of diffusion of tannins in extracts from physalis leaves (Physalis peruviana L.). Bulgarian Chemical Communications 51(D): 209-213.
  30. Trisatya, D.R., Santoso, A., Abdurrachman, A., Prastiwi, D.A. 2023. Performance of six-layered cross laminated timber of fast-growing species glued with tannin resorcinol formaldehyde. Journal of the Korean Wood Science and Technology 51(2): 81-97. https://doi.org/10.5658/WOOD.2023.51.2.81
  31. Um, M., Kim, J.W., Lee, J.W. 2020. Optimization of ascorbic acid extraction from rugosa rose (Rosa rugosa Thunb.) fruit using response surface methodology and validation of the analytical method. Journal of the Korean Wood Science and Technology 48(3): 364-375. https://doi.org/10.5658/WOOD.2020.48.3.364