DOI QR코드

DOI QR Code

Accuracy improvement of maximum torque per ampere control for interior permanent magnet synchronous motor drives reflecting PM flux linkage variations

  • Sungmin Choi (Department of Electrical Engineering, Jeonbuk National University) ;
  • Woongkul Lee (Department of Electrical and Computer Engineering, Michigan State University) ;
  • Areum Kang (Department of Electrical Engineering, Jeonbuk National University) ;
  • Seunghun Baek (Department of Electronic Engineering, Keimyung University) ;
  • Jae Suk Lee (Department of Electrical Engineering, Jeonbuk National University)
  • Received : 2022.12.05
  • Accepted : 2023.08.28
  • Published : 2023.11.20

Abstract

An algorithm for an interior permanent magnet synchronous motor (IPMSM) drive to improve the accuracy of maximum torque per ampere (MTPA) control reflecting variations in the permanent magnet (PM) flux linkage is proposed in this paper. In IPMSM drives, reluctance and PM torque are generated, and both the efciency and developed torque of IPMSM drives are directly affected by parameter variations. A stator flux linkage observer estimates PM flux linkage in real time, and a correction factor for torque error compensation is computed. The MTPA trajectory is formed into a two-dimensional look-up table (LUT), which is used to allow the MTPA trajectory to correct the torque error caused by parameter changes. In this paper, the proposed torque error compensation IPMSM control method is implemented and confirmed by simulation and experimental results.

Keywords

Acknowledgement

This work was partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1013260), and Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (No. 20224000000440, Sector coupling energy industry advancement manpower training program).

References

  1. Kim, H., Hartwig, J., Lorenz, R. D.: "Using on-line parameter estimation to improve efficiency of IPM machine drives," 2002 IEEE 33rd Annual IEEE Power Electron. Specialists Conference. 2, 815-820 (2002) 
  2. Mohamed, Y.A.-R.I., Lee, T.K.: Adaptive self-tuning MTPA vector controller for IPMSM drive system. IEEE Trans. Energy Convers. 21(3), 636-644 (2006)  https://doi.org/10.1109/TEC.2006.878243
  3. Niazi, P., Toliyat, H.A., Goodarzi, A.: Robust Maximum Torque per Ampere (MTPA) Control of PM-Assisted SynRM for Traction Applications. IEEE Trans. Veh. Technol. 56(4), 1538-1545 (2007)  https://doi.org/10.1109/TVT.2007.896974
  4. Schoonhoven, G., Uddin, M. N.: "MTPA- and FW-based robust nonlinear speed control of IPMSM drive using lyapunov stability criterion," IEEE Trans. Ind. Appl. 52(5), 4365-4374 (2016)  https://doi.org/10.1109/TIA.2016.2564941
  5. Underwood, S.J., Husain, I.: Online parameter estimation and adaptive control of permanent-magnet synchronous machines. IEEE Trans. Ind. Electron. 57(7), 2435-2443 (2010)  https://doi.org/10.1109/TIE.2009.2036029
  6. Liu, Q., Hameyer, K.: High-performance adaptive torque control for an IPMSM with real-time MTPA operation. IEEE Trans. Energy Convers. 32(2), 571-581 (2017)  https://doi.org/10.1109/TEC.2016.2633302
  7. Xu, Y., Wang, Y., Iida, R., Lorenz, R. D.: "Extending low-speed self-sensing via fux tracking with volt-second sensing," in IEEE Trans. Ind. Appl. 54(5), 4405-4414 (2018)  https://doi.org/10.1109/TIA.2018.2829476
  8. Murakami, M., Morimoto, S., Inoue, Y., Sanada, M.: "Maximum torque per ampere control of an IPMSM with magnetic saturation using online parameter identification," 2020 23rd Int. Conference on Electrical Machines and Systems (ICEMS), 1631-1636 (2020) 
  9. Wu, Z., Lu, K., Zhu, Y.: A practical torque estimation method for interior permanent magnet synchronous machine in electric vehicles. PLoS ONE 10(6), e0130923 (2015) 
  10. Deng, W., Xia, C., Yan, Y., Geng, Q., Shi, T.: Online multiparameter identification of surface-mounted PMSM considering inverter disturbance voltage. IEEE Trans. Energy Convers. 32(1), 202-212 (2017)  https://doi.org/10.1109/TEC.2016.2621130
  11. Bolognani, S., Petrella, R., Prearo, A., Sgarbossa, L.: Automatic tracking of MTPA trajectory in IPM motor drives based on AC current injection. IEEE Trans. Ind. Appl. 47(1), 105-114 (2011)  https://doi.org/10.1109/TIA.2010.2090842
  12. Kim, S., Yoon, Y.-D., Sul, S.-K., Ide, K.: Maximum torque per ampere (MTPA) control of an IPM machine based on signal injection considering inductance saturation. IEEE Trans. Power Electron. 28(1), 488-497 (2013)  https://doi.org/10.1109/TPEL.2012.2195203
  13. Antonello, R., Carraro, M., Zigliotto, M.: Maximum-torque-per-ampere operation of anisotropic synchronous permanent-magnet motors based on extremum seeking control. IEEE Trans. Industr. Electron. 61(9), 5086-5093 (2014)  https://doi.org/10.1109/TIE.2013.2278518
  14. Sun, T., Wang, J., Koc, M., Chen, X.: Self-learning MTPA control of interior permanent-magnet synchronous machine drives based on virtual signal injection. IEEE Trans. Ind. Appl. 52(4), 3062-3070 (2016)  https://doi.org/10.1109/TIA.2016.2533601
  15. Sun, T., Koc, M., Wang, J.: MTPA control of IPMSM drives based on virtual signal injection considering machine parameter variations. IEEE Trans. Ind. Electron. 65(8), 6089-6098 (2018)  https://doi.org/10.1109/TIE.2017.2784409
  16. Dianov, A., Anuchin, A.: Adaptive maximum torque per ampere control for IPMSM drives with load varying over mechanical revolution. IEEE J. Emerg. Select. Topics Power Electron. 10(3), 3409-3417 (2022)  https://doi.org/10.1109/JESTPE.2020.3029647
  17. Ganchev, M., Kral, C., Wolbank, T.: Compensation of speed dependency in sensorless rotor temperature estimation for permanent magnet synchronous motor. XXth Int. Confer. Electric. Mach. 2012, 1612-1618 (2012) 
  18. Jung, H.-S., Park, D., Kim, H., Sul, S.-K., Berry, D.J.: Non-invasive magnet temperature estimation of IPMSM based on highfrequency inductance with a pulsating high-frequency voltage signal injection. IEEE Trans. Ind. Appl. 55(3), 3076-3086 (2019)  https://doi.org/10.1109/TIA.2018.2889021
  19. EL-Refaie, A. M., Harris, N. C., Jahns, T. M., Rahman, K. M.: "Thermal analysis of multibarrier interior PM synchronous Machine using lumped parameter model." IEEE Trans. Energy Convers. 19(2), 303-309 (2004)  https://doi.org/10.1109/TEC.2004.827011
  20. Liu, Z.J., Binns, K.J., Low, T.S.: Analysis of eddy current and thermal problems in permanent magnet machines with radial-field topologies. IEEE Trans. Magn. 31(3), 1912-1915 (1995)  https://doi.org/10.1109/20.376413
  21. Grobler, A.J., Holm, S.R., van Schoor, G.: Thermal modelling of a high speed permanent magnet synchronous machine. Int. Electric Mach. Drives Conference 2013, 319-324 (2013) 
  22. Kral, C., Haumer, A., Lee, S.B.: A practical thermal model for the estimation of permanent magnet and stator winding temperatures. IEEE Trans. Power Electron. 29(1), 455-464 (2014)  https://doi.org/10.1109/TPEL.2013.2253128
  23. Specht, A., Wallscheid, O., Bocker, J.: "Determination of rotor temperature for an interior permanent magnet synchronous machine using a precise fux observer," 2014 Int. Power Electron. Conference (IPEC-Hiroshima 2014 - ECCE ASIA), 501-1507 (2014) 
  24. Wallscheid, O., Huber, T., Peters, W., Bocker, J.: "Real-time capable methods to determine the magnet temperature of permanent magnet synchronous motors - a review," IECON 2014 - 40th Annual Conference of the IEEE Ind. Electron. Soc. 811-818 (2014) 
  25. Gagas, B.S., Sasaki, K., Athavale, A., Kato, T., Lorenz, R.D.: Magnet temperature effects on the useful properties of variable fux PM synchronous machines and a mitigating method for magnetization changes. IEEE Trans. Ind. Appl. 53(3), 2189-2199 (2017)  https://doi.org/10.1109/TIA.2017.2674627
  26. Reigosa, D.D., Briz, F., Degner, M.W., Garcia, P., Guerrero, J.M.: Magnet temperature estimation in surface PM machines during six-step operation. IEEE Trans. Ind. Appl. 48(6), 2353-2361 (2012)  https://doi.org/10.1109/TIA.2012.2227097
  27. Reigosa, D.D., Briz, F., Degner, M.W., Garcia, P., Guerrero, J.M.: Temperature issues in saliency-tracking-based sensorless methods for PM Synchronous machines. IEEE Trans. Ind. Appl. 47(3), 1352-1360 (2011)  https://doi.org/10.1109/TIA.2011.2126033
  28. Reigosa, D.D., Fernandez, D., Yoshida, H., Kato, T., Briz, F.: Permanent-magnet temperature estimation in PMSMs using pulsating high-frequency current injection. IEEE Trans. Ind. Appl. 51(4), 3159-3168 (2015)  https://doi.org/10.1109/TIA.2015.2404922
  29. Reigosa, D.D., Fernandez, D., Tanimoto, T., Kato, T., Briz, F.: Permanent-magnet temperature distribution estimation in permanent-magnet synchronous machines using back electromotive force harmonics. IEEE Trans. Ind. Appl. 52(4), 3093-3103 (2016)  https://doi.org/10.1109/TIA.2016.2536579
  30. Reigosa, D.D., Fernandez, D., Tanimoto, T., Kato, T., Briz, F.: Sensitivity analysis of high-frequency signal injection-based temperature estimation methods to machine assembling tolerances. IEEE Trans. Ind. Appl. 52(6), 4798-4805 (2016)  https://doi.org/10.1109/TIA.2016.2586757
  31. Guerrero, J.M., Leetmaa, M., Briz, F., Zamarron, A., Lorenz, R.D.: Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods. IEEE Trans. Ind. Appl. 41(2), 618-626 (2005)  https://doi.org/10.1109/TIA.2005.844411
  32. Ganchev, M., Kral, C., Wolbank, T.M.: Compensation of speed dependence in sensorless rotor temperature estimation for permanent-magnet synchronous motor. IEEE Trans. Ind. Appl. 49(6), 2487-2495 (2013)  https://doi.org/10.1109/TIA.2013.2263211
  33. Ganchev, M., Kral, C., Oberguggenberger, H., Wolbank, T.: "Sensorless rotor temperature estimation of permanent magnet synchronous motor," IECON 2011 - 37th Annual Conference of the IEEE Ind. Electron. Soc. 2018-2023 (2011) 
  34. Reigosa, D., Fernandez, D., Tanimoto, T., Kato, T., Briz, F.: Comparative analysis of BEMF and pulsating high-frequency current injection methods for PM temperature estimation in PMSMs. IEEE Trans. Power Electron. 32(5), 3691-3699 (2017)  https://doi.org/10.1109/TPEL.2016.2592478
  35. Park, C.-S., Lee, J.S.: A torque error compensation algorithm for surface mounted permanent magnet synchronous machines with respect to magnet temperature variations. Energies 10(9), 1365 (2017) 
  36. Choi, S., Lee, S. -H., Lee, J. S.: "Torque Error Reduction of Interior Permanent Magnet Synchronous Motor Drives using a Stator Flux Linkage Observer," 2019 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2019 Int.Conference Optimiz. Electric. Electron. Equip. (OPTIM), 280-285 (2019)