DOI QR코드

DOI QR Code

Novel integrated coupled inductor boost with RL parallel damping network for improving dynamic response

  • He Liu (School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology) ;
  • Lu Qu (School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology) ;
  • Qiang Tong (School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology)
  • Received : 2022.11.01
  • Accepted : 2023.06.14
  • Published : 2023.11.20

Abstract

Boost derived converters are widely employed due to their simplicity and high reliability when it comes to obtaining a higher voltage level. However, the existence of right half-plane (RHP) zeros in the control-to-output transfer function deteriorates the dynamic performance of this category converters. Integrated coupling between the power inductor and the filter inductor is an effective method to alleviate the influence of RHP zeros. This paper puts forward a novel coupled inductor boost with an RL parallel damping (CIB-RLPD) network, where the input inductor, output inductor, and auxiliary inductor used to achieve RHP elimination have been integrated into a single magnetic core. The operating principle and small-signal analysis of the novel converter in continuous conduction mode (CCM) is discussed in detail. By an optimal design of the parameters of the damping network according to the Routh-Hurwitz Criterion, a novel converter with a good dynamic performance within a wide input voltage range can be achieved, which is a good candidate for renewable applications, particularly for spacecraft power systems. For the sake of comparison, the allowable operation duty ratio range and frequency response of the transfer function for both the original coupled inductor boost (CIB) and the proposed CIB-RLPD are presented in this paper. Finally, prototypes of the CIB and CIB-RLPD are implemented in the laboratory and experimental verifications are given to demonstrate the effectiveness of theoretical predictions.

Keywords

Acknowledgement

This work is supported by the Guangdong Regional Joint Fund-Youth Fund Project Fund No.: 2020A1515111136. Guangdong Innovation Project of Colleges No.: 2022KTSCX312. Doctoral Research Start-Up Project of SZIIT No.: SZIIT2022KJ068.

References

  1. Hariharan, K., Kapat, S., Mukhopadhyay, S.: Constant OFF-time digital current-mode controlled boost converters with enhanced stability boundary. IEEE Trans. Power Electron. 34(10), 10270-10281 (2019) https://doi.org/10.1109/TPEL.2019.2893428
  2. Leoncini, M., Levantino, S., Ghioni, M.: Design issues and performance analysis of CCM boost converters with RHP zero mitigation via inductor current sensing. J. Power Electron. 21, 285-295 (2021) https://doi.org/10.1007/s43236-020-00180-x
  3. Li, F., Lin, Z.: Novel passive controller design for enhancing boost converter stability in DC microgrid applications. IEEE J. Emerg. Sel. Top. Power Electron. 9(6), 6901-6911 (2021) https://doi.org/10.1109/JESTPE.2021.3070234
  4. Vorperian, V.: Simplified analysis of PWM converters using model of PWM switch. II. Discontinuous conduction mode. IEEE Trans. Aerosp. Electron. Syst. 26(3), 497-505 (1990) https://doi.org/10.1109/7.106127
  5. Rana, N., Banerjee, S., Giri, S.K., et al.: Modeling, analysis and implementation of an improved interleaved Buck-Boost converter. IEEE Trans. Circuits Syst. II. 68(7), 2588-2592 (2021)
  6. Rana, N., Sonar, S., Banerjee, S.: Performance investigation of closed-loop dual phase interleaved Buck-Boost converter with dragonfly optimized Type-III controller. IEEE Trans. Circuits Syst. II. 69(3), 1472-1476 (2022)
  7. Geetha, E., Maddah, M., Khosravi, M.M., et al.: Dynamic enhancement of interleaved step-up/step-down DC-DC converters using passive damping networks. J. Power Electron. 20(3), 657-663 (2020) https://doi.org/10.1007/s43236-020-00072-0
  8. Liu, H., Zhang, D.L.: Model following average-current-mode control with 1/∛s compensator for interleaved boost converters with improved dynamic response. IET Power Electron. 10(12), 1596-1608 (2017) https://doi.org/10.1049/iet-pel.2017.0070
  9. Viswanathan, K., Oruganti, R., Srinivasan, D.: A novel tri-state Boost converter with fast dynamics. IEEE Trans. Power Electron. 17(5), 677-683 (2002) https://doi.org/10.1109/TPEL.2002.802197
  10. Rana, N., Kumar, M., Ghosh, A., et al.: A novel interleaved tristate boost converter with lower ripple and improved dynamic response. IEEE Trans. Ind. Electron. 65(7), 5456-5465 (2018) https://doi.org/10.1109/TIE.2017.2774775
  11. Zeng, S., Zhou, G and Zhou, S.: Small signal modeling and RHP zero analysis of tri-state Boost converter with different freewheeling control strategies. In: 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC). IEEE, pp. 1-4 (2018)
  12. Poorali, B., Adib, E.: Right-half-plane zero elimination of Boost converter using magnetic coupling with forward energy transfer. IEEE Trans. Ind. Electron. 66(11), 8454-8462 (2019) https://doi.org/10.1109/TIE.2019.2891408
  13. Liu, H., Zhang, D.L.: Two-phase interleaved inverse-coupled inductor Boost without right half-plane zeros. IEEE Trans. Power Electron. 32(3), 1844-1859 (2017)
  14. Williams, B.: Dc-to-dc converters with continuous input and output power. IEEE Trans. Power Electron. 28(5), 2307-2316 (2013) https://doi.org/10.1109/TPEL.2012.2213272
  15. Gu, Y., Zhang, D.L., Zhao, Z.Y.: Input/output current ripple cancellation and RHP zero elimination in a boost converter using an integrated magnetic technique. IEEE Trans. Power Electron. 30(2), 747-756 (2015) https://doi.org/10.1109/TPEL.2014.2307571
  16. Calvente, J., Martinez-Salamero, L., Valderrama, H., et al.: Using magnetic coupling to eliminate right half-plane zeros in boost converters. IEEE Trans. Power Electron. Lett. 2(2), 58-62 (2004) https://doi.org/10.1109/LPEL.2004.834615
  17. Zhang, Y., Liu, J., Dong, Z., et al.: Dynamic performance improvement of diode-capacitor-based high step-up DC-DC converter through right-half-plane zero elimination. IEEE Trans. Power Electron. 32(8), 6532-6543 (2017) https://doi.org/10.1109/TPEL.2016.2616411
  18. DIaz, D., Meneses, D., Olover, J.A., et al.: Dynamic analysis of a Boost converter with ripple cancellation network by model-reduction techniques. IEEE Trans. Power Electron. 24(12), 2769-2775 (2009) https://doi.org/10.1109/TPEL.2009.2032187
  19. Singh, R.K., Mishra, S.: A magnetically coupled feedback-clamped optimal bidirectional battery charger. IEEE Trans. Ind. Electron. 60(2), 422-432 (2013) https://doi.org/10.1109/TIE.2012.2186776
  20. Garcia, O., Alou, P., Olover, J.A., et al.: Comparison of Boost-based MPPT topologies for space applications. IEEE Trans. Aerosp. Electron. Syst. 49(2), 1091-1107 (2013) https://doi.org/10.1109/TAES.2013.6494401