DOI QR코드

DOI QR Code

SOLITON FUNCTIONS AND RICCI CURVATURES OF D-HOMOTHETICALLY DEFORMED f-KENMOTSU ALMOST RIEMANN SOLITONS

  • Urmila Biswas (Department of Mathematics University of Kalyani) ;
  • Avijit Sarkar (Department of Mathematics University of Kalyani)
  • Received : 2022.12.22
  • Accepted : 2023.03.16
  • Published : 2023.10.31

Abstract

The present article contains the study of D-homothetically deformed f-Kenmotsu manifolds. Some fundamental results on the deformed spaces have been deduced. Some basic properties of the Riemannian metric as an inner product on both the original and deformed spaces have been established. Finally, applying the obtained results, soliton functions, Ricci curvatures and scalar curvatures of almost Riemann solitons with several kinds of potential vector fields on the deformed spaces have been characterized.

Keywords

Acknowledgement

The authors are thankful to the referee for his/her suggestions towards the improvement of the paper.

References

  1. A. M. Blaga, Remarks on almost Riemann solitons with gradient or torse-forming vector field, Bull. Malays. Math. Sci. Soc. 44 (2021), no. 5, 3215-3227. https://doi.org/10.1007/s40840-021-01108-9
  2. A. M. Blaga, Geometric solitons in a D-homothetically deformed Kenmotsu manifold, Filomat 36 (2022), no. 1, 175-186. https://doi.org/10.2298/FIL2201175B
  3. D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509, Springer, Berlin, 1976.
  4. R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988. https://doi.org/10.1090/conm/071/954419
  5. I. E. Hirica, C. N. Udriste, and C. N. Udriste, Ricci and Riemann solitons, Balkan J. Geom. Appl. 21 (2016), no. 2, 35-44.
  6. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. (2) 24 (1972), 93-103. https://doi.org/10.2748/tmj/1178241594
  7. H. G. Nagaraja, D. L. Kiran Kumar, and D. G. Prakasha, Da-homothetic deformation and Ricci solitons in (κ, µ)-contact metric manifolds, Konuralp J. Math. 7 (2019), no. 1, 122-127.
  8. Z. Olszak and R. M. Ro,sca, Normal locally conformal almost cosymplectic manifolds, Publ. Math. Debrecen 39 (1991), no. 3-4, 315-323. https://doi.org/10.5486/pmd.1991.39.3-4.12
  9. A. Sarkar and P. Bhakta, Some characterizations of three-dimensional f-Kenmotsu Ricci solitons, Facta Univ. Ser. Math. Inform. 35 (2020), no. 4, 1049-1057. https://doi.org/10.22190/fumi2004049s
  10. A. Sarkar, S. Halder, and U. C. De, Riemann and Ricci Bourguignon solitons on three-dimensional quasi-Sasakian manifolds, Filomat 36 (2022), no. 19, 6573-6584. https://doi.org/10.2298/FIL2219573S
  11. S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968), 700-717. http://projecteuclid.org/euclid.ijm/1256053971 https://doi.org/10.1215/ijm/1256053971
  12. V. Venkatesha and G. Divyashree, Three dimensional f-Kenmotsu manifold satisfying certain curvature conditions, Cubo 19 (2017), no. 1, 79-87. https://doi.org/10.4067/s0719-06462017000100005
  13. A. Yildiz, U. C. De, and M. Turan, On 3-dimensional f-Kenmotsu manifolds and Ricci solitons, Ukrainian Math. J. 65 (2013), no. 5, 684-693. https://doi.org/10.1007/s11253-013-0806-6