DOI QR코드

DOI QR Code

FORMULAS AND RELATIONS FOR BERNOULLI-TYPE NUMBERS AND POLYNOMIALS DERIVE FROM BESSEL FUNCTION

  • Selin Selen Ozbek Simsek (School of Engineering and Natural Sciences Basic Sciences Department Altinbas University) ;
  • Yilmaz Simsek (Department of Mathematics Faculty of Science Akdeniz University)
  • Received : 2023.02.27
  • Accepted : 2023.05.31
  • Published : 2023.10.31

Abstract

The main purpose of this paper is to give some new identities and properties related to Bernoulli type numbers and polynomials associated with the Bessel function of the first kind. We give symmetric properties of the Bernoulli type numbers and polynomials. Moreover, using generating functions and the Faà di Bruno's formula, we derive some new formulas and relations related to not only these polynomials, but also the Bernoulli numbers and polynomials and the Euler numbers and polynomials.

Keywords

References

  1. B. C. Berndt, Ramanujan's notebooks. Part I, Springer, New York, 1989. 
  2. C. Frappier, Representation formulas for entire functions of exponential type and generalized Bernoulli polynomials, J. Austral. Math. Soc. Ser. A 64 (1998), no. 3, 307-316.  https://doi.org/10.1017/S1446788700039185
  3. C. Frappier, Generalised Bernoulli polynomials and series, Bull. Austral. Math. Soc. 61 (2000), no. 2, 289-304. https://doi.org/10.1017/S0004972700022292 
  4. C. Frappier, A unified calculus using the generalized Bernoulli polynomials, J. Approx. Theory 109 (2001), no. 2, 279-313. https://doi.org/10.1006/jath.2000.3550 
  5. W. P. Johnson, The curious history of Faa di Bruno's formula, Amer. Math. Monthly 109 (2002), no. 3, 217-234. https://doi.org/10.2307/2695352 
  6. N. Kilar and Y. Simsek, Formulas involving sums of powers, special numbers and polynomials arising from p-adic integrals, trigonometric and generating functions, Publ. Inst. Math. (Beograd) (N.S.) 108(122) (2020), 103-120. https://doi.org/10.2298/pim2022103k 
  7. T. Kim, Sums of powers of consecutive q-integers, Adv. Stud. Contemp. Math. (Kyungshang) 9 (2004), no. 1, 15-18. 
  8. T. Kim, Symmetry p-adic invariant integral on ℤp for Bernoulli and Euler polynomials, J. Difference Equ. Appl. 14 (2008), no. 12, 1267-1277. https://doi.org/10.1080/10236190801943220 
  9. T. Kim, Note on the Euler numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 17 (2008), no. 2, 131-136. 
  10. T. Kim, D. S. Kim, and J. Kwon, Analogues of Faulhaber's formula for poly-Bernoulli and type 2 poly-Bernoulli polynomials, Montes Taurus J. Pure Appl. Math. 3 (2021), no. 1, 1-6.  https://doi.org/10.1186/s13660-021-02592-0
  11. T. Kim, S.-H. Rim, and Y. Simsek, A note on the alternating sums of powers of consecutive q-integers, Adv. Stud. Contemp. Math. (Kyungshang) 13 (2006), no. 2, 159-164. 
  12. I. Kucukoglu and Y. Simsek, Identities and relations on the q-Apostol type Frobenius-Euler numbers and polynomials, J. Korean Math. Soc. 56 (2019), no. 1, 265-284. https://doi.org/10.4134/JKMS.j180185 
  13. D. J. Masirevic, R. K. Parmar, and T. K. Pogany, (p, q)-extended Bessel and modified Bessel functions of the first kind, Results Math. 72 (2017), no. 1-2, 617-632. https://doi.org/10.1007/s00025-016-0649-1 
  14. S. S. Ozbek, Generating functions for Bernoulli numbers and polynomials, Master Thesis, Akdeniz University 2009. 
  15. T. K. Pogany and E. E. Suli, Integral representation for Neumann series of Bessel functions, Proc. Amer. Math. Soc. 137 (2009), no. 7, 2363-2368. https://doi.org/10.1090/S0002-9939-09-09796-2 
  16. Y. Simsek, Special functions related to Dedekind-type DC-sums and their applications, Russ. J. Math. Phys. 17 (2010), no. 4, 495-508. https://doi.org/10.1134/S1061920810040114 
  17. Y. Simsek, Complete sum of products of (h, q)-extension of Euler polynomials and numbers, J. Difference Equ. Appl. 16 (2010), no. 11, 1331-1348. https://doi.org/10.1080/10236190902813967 
  18. Y. Simsek, Explicit formulas for p-adic integrals: Approach to p-adic distributions and some families of special numbers and polynomials, Montes Taurus J. Pure Appl. Math. 1 (2019), no. 1, 1-76. 
  19. H. J. H. Tuenter, A symmetry of power sum polynomials and Bernoulli numbers, Amer. Math. Monthly 108 (2001), no. 3, 258-261. https://doi.org/10.2307/2695389 
  20. T. Usmana, N. Khanb, M. Saifc, and J. Choi, A unified family of Apostol-Bernoulli based poly-Daehee polynomials, Montes Taurus J. Pure Appl. Math. 3 (2021), no. (3), 1-11. 
  21. S. L. Yang, An identity of symmetry for the Bernoulli polynomials, Discrete Math. 308 (2008), no. 4, 550-554. https://doi.org/10.1016/j.disc.2007.03.030