References
- B. C. Berndt, Ramanujan's notebooks. Part I, Springer, New York, 1989.
- C. Frappier, Representation formulas for entire functions of exponential type and generalized Bernoulli polynomials, J. Austral. Math. Soc. Ser. A 64 (1998), no. 3, 307-316. https://doi.org/10.1017/S1446788700039185
- C. Frappier, Generalised Bernoulli polynomials and series, Bull. Austral. Math. Soc. 61 (2000), no. 2, 289-304. https://doi.org/10.1017/S0004972700022292
- C. Frappier, A unified calculus using the generalized Bernoulli polynomials, J. Approx. Theory 109 (2001), no. 2, 279-313. https://doi.org/10.1006/jath.2000.3550
- W. P. Johnson, The curious history of Faa di Bruno's formula, Amer. Math. Monthly 109 (2002), no. 3, 217-234. https://doi.org/10.2307/2695352
- N. Kilar and Y. Simsek, Formulas involving sums of powers, special numbers and polynomials arising from p-adic integrals, trigonometric and generating functions, Publ. Inst. Math. (Beograd) (N.S.) 108(122) (2020), 103-120. https://doi.org/10.2298/pim2022103k
- T. Kim, Sums of powers of consecutive q-integers, Adv. Stud. Contemp. Math. (Kyungshang) 9 (2004), no. 1, 15-18.
- T. Kim, Symmetry p-adic invariant integral on ℤp for Bernoulli and Euler polynomials, J. Difference Equ. Appl. 14 (2008), no. 12, 1267-1277. https://doi.org/10.1080/10236190801943220
- T. Kim, Note on the Euler numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 17 (2008), no. 2, 131-136.
- T. Kim, D. S. Kim, and J. Kwon, Analogues of Faulhaber's formula for poly-Bernoulli and type 2 poly-Bernoulli polynomials, Montes Taurus J. Pure Appl. Math. 3 (2021), no. 1, 1-6. https://doi.org/10.1186/s13660-021-02592-0
- T. Kim, S.-H. Rim, and Y. Simsek, A note on the alternating sums of powers of consecutive q-integers, Adv. Stud. Contemp. Math. (Kyungshang) 13 (2006), no. 2, 159-164.
- I. Kucukoglu and Y. Simsek, Identities and relations on the q-Apostol type Frobenius-Euler numbers and polynomials, J. Korean Math. Soc. 56 (2019), no. 1, 265-284. https://doi.org/10.4134/JKMS.j180185
- D. J. Masirevic, R. K. Parmar, and T. K. Pogany, (p, q)-extended Bessel and modified Bessel functions of the first kind, Results Math. 72 (2017), no. 1-2, 617-632. https://doi.org/10.1007/s00025-016-0649-1
- S. S. Ozbek, Generating functions for Bernoulli numbers and polynomials, Master Thesis, Akdeniz University 2009.
- T. K. Pogany and E. E. Suli, Integral representation for Neumann series of Bessel functions, Proc. Amer. Math. Soc. 137 (2009), no. 7, 2363-2368. https://doi.org/10.1090/S0002-9939-09-09796-2
- Y. Simsek, Special functions related to Dedekind-type DC-sums and their applications, Russ. J. Math. Phys. 17 (2010), no. 4, 495-508. https://doi.org/10.1134/S1061920810040114
- Y. Simsek, Complete sum of products of (h, q)-extension of Euler polynomials and numbers, J. Difference Equ. Appl. 16 (2010), no. 11, 1331-1348. https://doi.org/10.1080/10236190902813967
- Y. Simsek, Explicit formulas for p-adic integrals: Approach to p-adic distributions and some families of special numbers and polynomials, Montes Taurus J. Pure Appl. Math. 1 (2019), no. 1, 1-76.
- H. J. H. Tuenter, A symmetry of power sum polynomials and Bernoulli numbers, Amer. Math. Monthly 108 (2001), no. 3, 258-261. https://doi.org/10.2307/2695389
- T. Usmana, N. Khanb, M. Saifc, and J. Choi, A unified family of Apostol-Bernoulli based poly-Daehee polynomials, Montes Taurus J. Pure Appl. Math. 3 (2021), no. (3), 1-11.
- S. L. Yang, An identity of symmetry for the Bernoulli polynomials, Discrete Math. 308 (2008), no. 4, 550-554. https://doi.org/10.1016/j.disc.2007.03.030