DOI QR코드

DOI QR Code

Static analysis of 2D-FG nonlocal porous tube using gradient strain theory and based on the first and higher-order beam theory

  • Xiaozhong Zhang (Department of International Applied Technology, Yibin University) ;
  • Jianfeng Li (Faculty of Engineering, China University of Geosciences (Wuhan)) ;
  • Yan Cui (School of Civil Engineering, Hebei Polytechnic Institute) ;
  • Mostafa Habibi (Faculty of Architecture and Urbanism, UTE University) ;
  • H. Elhosiny Ali (Department of Physics, Faculty of Science, King Khalid University) ;
  • Ibrahim Albaijan (Mechanical Engineering Department, College of Engineering at Al Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Tayebeh Mahmoudi (Hoonam Sanat Farnak Engineering and Technology Company)
  • 투고 : 2021.01.18
  • 심사 : 2023.09.24
  • 발행 : 2023.11.10

초록

This article focuses on the study of the buckling behavior of two-dimensional functionally graded (2D-FG) nanosize tubes, including porosity, based on the first shear deformation and higher-order theory of the tube. The nano-scale tube is simulated using the nonlocal gradient strain theory, and the general equations and boundary conditions are derived using Hamilton's principle for the Zhang-Fu's tube model (as a higher-order theory) and Timoshenko beam theory. Finally, the derived equations are solved using a numerical method for both simply-supported and clamped boundary conditions. A parametric study is performed to investigate the effects of different parameters, such as axial and radial FG power indices, porosity parameter, and nonlocal gradient strain parameters, on the buckling behavior of the bi-dimensional functionally graded porous tube. Keywords: Nonlocal strain gradient theory; buckling; Zhang-Fu's tube model; Timoshenko theory; Two-dimensional functionally graded materials; Nanotubes; Higher-order theory.

키워드

과제정보

This work was supported by the project of "Research on coupled vibration dynamic response of bridge structure under the action of flood peak of Yangtze River" (Yibin University, grand number: 2020qh02).

참고문헌

  1. Apuzzo, A., Bartolomeo, C., Luciano, R. and Scorza, D. (2020), "Novel local/nonlocal formulation of the stress-driven model through closed form solution for higher vibrations modes", Compos. Struct., 252, 112688. https://doi.org/10.1016/j.compstruct.2020.112688.
  2. Aria, A.I., Rabczuk, T. and Friswell, M.I. (2019), "A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams", Europ. J. Mech. - A/Solids. 77, 103767. https://doi.org/10.1016/j.euromechsol.2019.04.002.
  3. Asprone, D., Auricchio, F., Menna, C., Morganti, S., Prota, A. and Reali, A. (2013), "Statistical finite element analysis of the buckling behavior of honeycomb structures", Compos. Struct., 105, 240-255. https://doi.org/10.1016/j.compstruct.2013.05.014.
  4. Atmane Hassen, A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. http://dx.doi.org/10.12989/SCS.2015.19.2.369.
  5. Attia, A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. http://dx.doi.org/10.12989/SCS.2015.18.1.187.
  6. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. http://dx.doi.org/10.12989/SCS.2019.30.6.603.
  7. Bacciocchi, M., Fantuzzi, N., Luciano, R. and Tarantino, A.M. (2021), "Linear eigenvalue analysis of laminated thin plates including the strain gradient effect by means of conforming and nonconforming rectangular finite elements", Comput. Struct., 257, 106676. https://doi.org/10.1016/j.compstruc.2021.106676.
  8. Bamdad, M., Mohammadimehr, M. and Alambeigi, K. (2020), "Bending and buckling analysis of sandwich Reddy beam considering shape memory alloy wires and porosity resting on Vlasov's foundation", Steel Compos. Struct., 36(6), 671-687. http://dx.doi.org/10.12989/SCS.2020.36.6.671.
  9. Barretta, R., Feo, L., Luciano, R. and Marotti de Sciarra, F. (2015a), "Variational formulations for functionally graded nonlocal Bernoulli-Euler nanobeams", Compos. Struct., 129, 80-89. https://doi.org/10.1016/j.compstruct.2015.03.033.
  10. Barretta, R., Feo, L., Luciano, R. and Marotti de Sciarra, F. (2016), "Application of an enhanced version of the Eringen differential model to nanotechnology", Compos. Part B: Eng., 96, 274-280. https://doi.org/10.1016/j.compositesb.2016.04.023.
  11. Barretta, R., Luciano, R. and Marotti de Sciarra, F. (2015b), "A fully gradient model for Euler-Bernoulli nanobeams", Mathem. Prob. Eng., 2015, 495095. https://doi.org/10.1155/2015/495095.
  12. Bellifa, H., Bakora, A., Tounsi, A., Bousahla Abdelmoumen, A. and Mahmoud, S.R. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. http://dx.doi.org/10.12989/SCS.2017.25.3.257.
  13. Bennai, R., Atmane Hassen, A. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. http://dx.doi.org/10.12989/SCS.2015.19.3.521.
  14. Bodaghi, M. and Saidi, A.R. (2010), "Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory", Appl. Mathem. Modelling. 34(11), 3659-3673. https://doi.org/10.1016/j.apm.2010.03.016.
  15. Chaht Fouzia, L., Kaci, A., Houari Mohammed Sid, A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. http://dx.doi.org/10.12989/SCS.2015.18.2.425.
  16. Chakraborty, S., Dey, T. and Kumar, R. (2019), "Stability and vibration analysis of CNT-Reinforced functionally graded laminated composite cylindrical shell panels using semi-analytical approach", Compos. Part B: Eng., 168 1-14. https://doi.org/10.1016/j.compositesb.2018.12.051.
  17. Cheng, F., Niu, B., Xu, N., Zhao, X. and Ahmad, A.M. (2023), "Fault detection and performance recovery design with deferred actuator replacement via a low-computation method", IEEE Transact. Automation Sci. Eng., 1-11. https://doi.org/10.1109/TASE.2023.3300723.
  18. Correia, J.R., Branco, F.A., Silva, N.M.F., Camotim, D. and Silvestre, N. (2011), "First-order, buckling and post-buckling behaviour of GFRP pultruded beams. Part 1: Experimental study", Comput. Struct., 89(21), 2052-2064. https://doi.org/10.1016/j.compstruc.2011.07.005.
  19. Daneshmehr, A., Rajabpoor, A. and pourdavood, M. (2014), "Stability of size dependent functionally graded nanoplate based on nonlocal elasticity and higher order plate theories and different boundary conditions", Int. J. Eng. Sci., 82, 84-100. https://doi.org/10.1016/j.ijengsci.2014.04.017.
  20. Darban, H., Caporale, A. and Luciano, R. (2021), "Nonlocal layerwise formulation for bending of multilayered/functionally graded nanobeams featuring weak bonding", Europ. J. Mech.-A/Solids. 86, 104193. https://doi.org/10.1016/j.euromechsol.2020.104193.
  21. Dehghanbanadaki, A., Rashid, A.S.A., Ahmad, K., Yunus, N.Z.M. and Said, K.N.M. (2022), "A computational estimation model for the subgrade reaction modulus of soil improved with DCM columns", Geomech. Eng., 28(4), 385. https://doi.org/10.12989/gae.2022.28.4.385.
  22. Espinosa, H.D., Bernal, R.A. and Minary-Jolandan, M. (2012), "A review of mechanical and electromechanical properties of piezoelectric nanowires", Adv. Mater., 24(34), 4656-4675. https://doi.org/10.1002/adma.201104810.
  23. Foroutan, K., Carrera, E. and Ahmadi, H. (2021), "Nonlinear hygrothermal vibration and buckling analysis of imperfect FG-CNTRC cylindrical panels embedded in viscoelastic foundations", Europ. J. Mech. - A/Solids. 85, 104107. https://doi.org/10.1016/j.euromechsol.2020.104107.
  24. Gauvin, R., Chen, Y.-C., Lee, J.W., Soman, P., Zorlutuna, P., Nichol, J.W., Bae, H., Chen, S. and Khademhosseini, A. (2012), "Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography", Biomaterials. 33(15), 3824-3834. https://doi.org/10.1016/j.biomaterials.2012.01.048.
  25. Gayen, D., Tiwari, R. and Chakraborty, D. (2019), "Static and dynamic analyses of cracked functionally graded structural components: A review", Compos. Part B: Eng., 173, 106982. https://doi.org/10.1016/j.compositesb.2019.106982.
  26. Ghatage, P.S., Kar, V.R. and Sudhagar, P.E. (2020), "On the numerical modelling and analysis of multi-directional functionally graded composite structures: A review", Compos. Struct., 236, 111837. https://doi.org/10.1016/j.compstruct.2019.111837.
  27. Gildersleeve, E.J. and Vassen, R. (2023), "Thermally sprayed functional coatings and multilayers: A selection of historical applications and potential pathways for future innovation", J. Thermal Spray Technol., 32(4), 778-817. https://doi.org/10.1007/s11666-023-01587-1.
  28. Guo, S., Zhao, X., Wang, H. and Xu, N. (2023), "Distributed consensus of heterogeneous switched nonlinear multiagent systems with input quantization and DoS attacks", Appl. Mathem. Comput., 456, 128127. https://doi.org/10.1016/j.amc.2023.128127.
  29. Hao, R.-B., Lu, Z.-Q., Ding, H. and Chen, L.-Q. (2022), "Orthogonal six-DOFs vibration isolation with tunable high-static-low-dynamic stiffness: Experiment and analysis", Int. J. Mech. Sci., 222, 107237. https://doi.org/10.1016/j.ijmecsci.2022.107237.
  30. Heidary, Z., Ramezani, S.R. and Mojra, A. (2023), "Exploring the benefits of functionally graded carbon nanotubes (FG-CNTs) as a platform for targeted drug delivery systems", Comput. Meth. Programs Biomedicine. 238, 107603. https://doi.org/10.1016/j.cmpb.2023.107603.
  31. Hou, S. and Wu, S. (2021), "Nonlinear thermal vibration of functionally graded non-uniform and imperfect micro-tube including the porosity in the thermal environment for different cross-section", Waves Random Complex Media. 1-26. https://doi.org/10.1080/17455030.2021.1998726.
  32. Houari Mohammed Sid, A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. http://dx.doi.org/10.12989/SCS.2016.22.2.257.
  33. Huang, S. and Fu, X. (2010), "Naturally derived materials-based cell and drug delivery systems in skin regeneration", J. Controlled Release. 142(2), 149-159. https://doi.org/10.1016/j.jconrel.2009.10.018.
  34. Huang, S., Zong, G., Wang, H., Zhao, X. and Alharbi, K.H. (2023), "Command filter-based adaptive fuzzy self-triggered control for MIMO nonlinear systems with time-varying full-state constraints", Int. J. Fuzzy Syst., https://doi.org/10.1007/s40815-023-01560-8.
  35. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2022), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput., 38(3), 2481-2498. https://doi.org/10.1007/s00366-021-01395-7.
  36. Jia, A., Liu, H., Ren, L., Yun, Y. and Tahouneh, V. (2020), "Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate", Steel Compos. Struct., 35(1), 111-127. http://dx.doi.org/10.12989/SCS.2020.35.1.111.
  37. Kar Vishesh, R. and Panda Subrata, K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. http://dx.doi.org/10.12989/SCS.2015.18.3.693.
  38. Krylov, S., Ilic, B.R., Schreiber, D., Seretensky, S. and Craighead, H. (2008), "The pull-in behavior of electrostatically actuated bistable microstructures", J. Micromech. Microeng., 18(5), 055026. https://doi.org/10.1088/0960-1317/18/5/055026.
  39. Li, H., Han, Y., Duan, T. and Leifer, K. (2019), "Size-dependent elasticity of gold nanoparticle measured by atomic force microscope based nanoindentation", Appl. Phys. Lett., 115(5), 053104. https://doi.org/10.1063/1.5095182.
  40. Li, J., Chen, M. and Li, Z. (2022), "Improved soil-structure interaction model considering time-lag effect", Comput. Geotech., 148, 104835. https://doi.org/10.1016/j.compgeo.2022.104835.
  41. Li, Y., Chen, X. and Gu, N. (2008), "Computational investigation of interaction between nanoparticles and membranes: Hydrophobic/hydrophilic effect", J. Phys. Chemistry B. 112(51), 16647-16653. https://doi.org/10.1021/jp8051906.
  42. Li, Y., Feng, Z., Hao, L., Huang, L., Xin, C., Wang, Y., Bilotti, E., Essa, K., Zhang, H., Li, Z., Yan, F. and Peijs, T. (2020), "A review on functionally graded materials and structures via additive manufacturing: From multi-scale design to versatile functional properties", Adv. Mater. Technol., 5(6), 1900981. https://doi.org/10.1002/admt.201900981.
  43. Lin, C.I., Yamamoto, N., King, D.S. and Singh, J. (2021), "Solid-state joining of dissimilar ni-based superalloys via field-assisted sintering technology for turbine applications", Metallurgic. Mater. Transact. A. 52(6), 2149-2154. https://doi.org/10.1007/s11661-021-06274-w.
  44. Lu, H., Zhu, Y., Yin, M., Yin, G. and Xie, L. (2022), "Multimodal fusion convolutional neural network with cross-attention mechanism for unternal defect detection of magnetic tile", IEEE Access. 10, 60876-60886. https://doi.org/10.1109/ACCESS.2022.3180725.
  45. Luciano, R., Darban, H., Bartolomeo, C., Fabbrocino, F. and Scorza, D. (2020), "Free flexural vibrations of nanobeams with non-classical boundary conditions using stress-driven nonlocal model", Mech. Res. Commun., 107, 103536. https://doi.org/10.1016/j.mechrescom.2020.103536.
  46. Luciano, R. and Willis, J.R. (2001), "Non-local constitutive response of a random laminate subjected to configuration-dependent body force", J. Mech. Phys. Solids. 49(2), 431-444. https://doi.org/10.1016/S0022-5096(00)00031-4.
  47. Luo, C., Wang, L., Xie, Y. and Chen, B. (2022), "A new conjugate gradient method for moving force identification of vehicle-bridge system", J. Vib. Eng. Technol., https://doi.org/10.1007/s42417-022-00824-1.
  48. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla Abdelmoumen, A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. http://dx.doi.org/10.12989/SCS.2019.32.5.595.
  49. Mirjavadi Seyed, S., Forsat, M., Barati Mohammad, R. and Hamouda, A.M.S. (2020), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. http://dx.doi.org/10.12989/SCS.2020.35.4.567.
  50. Mirjavadi, S.S., Forsat, M., Barati, M.R., Abdella, G.M., Hamouda, A.M.S., Afshari, B.M. and Rabby, S. (2019), "Post-buckling analysis of piezo-magnetic nanobeams with geometrical imperfection and different piezoelectric contents", Microsyst. Technol., 25(9), 3477-3488. 10.1007/s00542-018-4241-3.
  51. Moghadam, P.Z., Li, A., Wiggin, S.B., Tao, A., Maloney, A.G.P., Wood, P.A., Ward, S.C. and Fairen-Jimenez, D. (2017), "Development of a cambridge structural database subset: A collection of metal-organic frameworks for past, present, and future", Chemistry Mater., 29(7), 2618-2625. https://doi.org/10.1021/acs.chemmater.7b00441.
  52. Mohammadi, A., Ebadi, T. and Boroomand, M.R. (2020), "Interface shear between different oil-contaminated sand and construction materials", Geomech. Eng., 20(4), 299. https://doi.org/10.12989/gae.2020.20.4.299.
  53. Muller, E., Drasar, C., Schilz, J. and Kaysser, W. (2003), "Functionally graded materials for sensor and energy applications", Mater. Sci. Eng.: A. 362(1-2), 17-39. https://doi.org/10.1016/S0921-5093(03)00581-1
  54. Nakamura, T., Wang, T. and Sampath, S. (2000), "Determination of properties of graded materials by inverse analysis and instrumented indentation", Acta Materialia. 48(17), 4293-4306. https://doi.org/10.1016/S1359-6454(00)00217-2.
  55. Nguyen, T. and Montemor, M.d.F. (2019), "Metal oxide and hydroxide-based aqueous supercapacitors: From charge storage mechanisms and functional electrode engineering to need-tailored devices", Adv. Sci., 6(9), 1801797. https://doi.org/10.1002/advs.201801797.
  56. Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D. and Schulte, K. (2003), "Functionally graded materials for biomedical applications", Mater. Sci. Eng.: A. 362(1-2), 40-60. https://doi.org/10.1016/S0921-5093(03)00580-X
  57. Ramteke Prashik, M., Panda Subrata, K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. http://dx.doi.org/10.12989/SCS.2019.33.6.865.
  58. Sam, M., Jojith, R. and Radhika, N. (2021), "Progression in manufacturing of functionally graded materials and impact of thermal treatment-A critical review", J. Manufact. Processes. 68, 1339-1377. https://doi.org/10.1016/j.jmapro.2021.06.062.
  59. Schulz, U., Peters, M., Bach, F.-W. and Tegeder, G. (2003), "Graded coatings for thermal, wear and corrosion barriers", Mater. Sci. Eng.: A. 362(1-2), 61-80. https://doi.org/10.1016/S0921-5093(03)00579-3
  60. Scorza, D., Luciano, R. and Vantadori, S. (2022), "Fracture behaviour of nanobeams through Two-Phase Local/Nonlocal Stress-Driven model", Compos. Struct., 280, 114957. https://doi.org/10.1016/j.compstruct.2021.114957.
  61. Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Meth. Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
  62. Shafiei, N. and She, G.-L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci.. 133 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004.
  63. Shinde, P.A. and Jun, S.C. (2020), "Review on Recent Progress in the Development of Tungsten Oxide Based Electrodes for Electrochemical Energy Storage", ChemSusChem. 13(1), 11-38. https://doi.org/10.1002/cssc.201902071.
  64. Sing, S.L., An, J., Yeong, W.Y. and Wiria, F.E. (2016), "Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs", J. Orthopaedic Res., 34(3), 369-385. https://doi.org/10.1002/jor.23075.
  65. Soni, S.K., Thomas, B., Swain, A. and Roy, T. (2022), "Functionally graded carbon nanotubes reinforced composite structures: An extensive review", Compos. Struct., 299, 116075. https://doi.org/10.1016/j.compstruct.2022.116075.
  66. Tang, F., Wang, H., Zhang, L., Xu, N. and Ahmad, A.M. (2023), "Adaptive optimized consensus control for a class of nonlinear multi-agent systems with asymmetric input saturation constraints and hybrid faults", Commun. Nonlinear Sci. Numer. Simul., 126, 107446. https://doi.org/10.1016/j.cnsns.2023.107446.
  67. Tian, L.-M., Jin, B.-B. and Li, L. (2023a), "Axial compressive mechanical behaviors of a double-layer member", J. Struct. Eng., 149(8), 04023110. https://doi.org/10.1061/JSENDH.STENG-12175.
  68. Tian, L.-m., Li, M.-h., Li, L., Li, D.-y. and Bai, C. (2023b), "Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios", Thin-Wall. Struct., 182, 110219. https://doi.org/10.1016/j.tws.2022.110219.
  69. Ugurlu, O.F. and Ozturk, C.A. (2021), "Experimental investigation for the use of tailings as paste-fill material through design of experiment", Geomech. Eng., 26(5), 465. https://doi.org/10.12989/gae.2021.26.5.465.
  70. Vantadori, S., Luciano, R., Scorza, D. and Darban, H. (2022), "Fracture analysis of nanobeams based on the stress-driven nonlocal theory of elasticity", Mech. Adv. Mater. Struct., 29(14), 1967-1976. https://doi.org/10.1080/15376494.2020.1846231.
  71. Wang, C. and Chen, K. (2022), "Fundamental and conventional computer simulation for the stability of non-uniform systems", Adv. Nano Res., 13(2), 135-146. https://doi.org/10.12989/anr.2022.13.2.135.
  72. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bidirectional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elements. 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007.
  73. Wang, T., Zhou, G., Wang, J. and Wang, D. (2020), "Impact of spatial variability of geotechnical properties on uncertain settlement of frozen soil foundation around an oil pipeline", Geomech. Eng., 20(1), 19. https://doi.org/10.12989/gae.2020.20.1.019.
  74. Wang, Y., Jia, Q. and Deng, T. (2023), "The role of nanotechnology in reducing the impact on the ball and increasing the speed of its movement", Geomech. Eng., 32(5), 463-474. https://doi.org/10.12989/gae.2023.32.5.463.
  75. Weiland, T. (1996), "Time domain electromagnetic field computation with finite difference methods", Int. J. Numer. Modelling: Electron. Networks, Devices Fields. 9(4), 295-319. https://doi.org/10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8.
  76. Wu, J., Xu, F., Li, S., Ma, P., Zhang, X., Liu, Q., Fu, R. and Wu, D. (2019), "Porous polymers as multifunctional material platforms toward task-specific applications", Adv. Mater., 31(4), 1802922. https://doi.org/10.1002/adma.201802922.
  77. Wu, Z., Huang, B., Fan, J. and Chen, H. (2023), "Homotopy based stochastic finite element model updating with correlated static measurement data", Measurement. 210, 112512. https://doi.org/10.1016/j.measurement.2023.112512.
  78. Xia, W., Song, J., Hsu, D.D. and Keten, S. (2016), "Understanding the interfacial mechanical response of nanoscale polymer thin films via nanoindentation", Macromolecules. 49(10), 3810-3817. https://doi.org/10.1021/acs.macromol.6b00121.
  79. Yan, S., Gu, Z., Park, J.H. and Xie, X. (2023), "A delay-kernel-dependent approach to saturated control of linear systems with mixed delays", Automatica. 152 110984. https://doi.org/10.1016/j.automatica.2023.110984.
  80. Zarga, D., Tounsi, A., Bousahla Abdelmoumen, A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. http://dx.doi.org/10.12989/SCS.2019.32.3.389.
  81. Zhang, C., Khorshidi, H., Najafi, E. and Ghasemi, M. (2023a), "Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review", J. Cleaner Product., 384, 135390. https://doi.org/10.1016/j.jclepro.2022.135390.
  82. Zhang, K., Jia, C., Song, Y., Jiang, S., Jiang, Z., Wen, M., Huang, Y., Liu, X., Jiang, T., Peng, J., Wang, X., Xia, Q., Li, B., Li, X. and Liu, T. (2020), "Analysis of lower cambrian shale gas composition, source and accumulation pattern in different tectonic backgrounds: A case study of Weiyuan Block in the Upper Yangtze region and Xiuwu Basin in the Lower Yangtze region", Fuel. 263, 115978. https://doi.org/10.1016/j.fuel.2019.115978.
  83. Zhang, K., Song, Y., Jia, C., Jiang, Z., Han, F., Wang, P., Yuan, X., Yang, Y., Zeng, Y., Li, Y., Li, Z., Liu, P. and Tang, L. (2022), "Formation mechanism of the sealing capacity of the roof and floor strata of marine organic-rich shale and shale itself, and its influence on the characteristics of shale gas and organic matter pore development", Marine Petroleum Geology. 140, 105647. https://doi.org/10.1016/j.marpetgeo.2022.105647.
  84. Zhang, P. and Fu, Y. (2013), "A higher-order beam model for tubes", Europ. J. Mech. - A/Solids. 38, 12-19. https://doi.org/10.1016/j.euromechsol.2012.09.009.
  85. Zhang, W.-M., Yan, H., Peng, Z.-K. and Meng, G. (2014), "Electrostatic pull-in instability in MEMS/NEMS: A review", Sensors Actuators A: Phys., 214, 187-218. https://doi.org/10.1016/j.sna.2014.04.025.
  86. Zhang, W., Kang, S., Liu, X., Lin, B. and Huang, Y. (2023b), "Experimental study of a composite beam externally bonded with a carbon fiber-reinforced plastic plate", J. Build. Eng., 71, 106522. https://doi.org/10.1016/j.jobe.2023.106522.
  87. Zhang, X. and Mei, K.K. (1988), "Time-domain finite difference approach to the calculation of the frequency-dependent characteristics of microstrip discontinuities", IEEE Transact. Microwave Theory Techniques. 36(12), 1775-1787. https://doi.org/10.1109/22.17413.
  88. Zhou, C., Zhang, Z., Zhang, J., Fang, Y. and Tahouneh, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Compos. Struct., 34(2), 215-226. http://dx.doi.org/10.12989/SCS.2020.34.2.215.
  89. Zivanovic, S.S., Yee, K.S. and Mei, K.K. (1991), "A subgridding method for the time-domain finite-difference method to solve Maxwell's equations", IEEE Transact. Microwave Theory Techniques. 39(3), 471-479. https://doi.org/10.1109/22.75289.
  90. Zou, X. and Zhu, G. (2018), "Microporous organic materials for membrane-based gas separation", Adv. Mater., 30(3), 1700750. https://doi.org/10.1002/adma.201700750.