DOI QR코드

DOI QR Code

Study of Small Craft Resistance under Different Loading Conditions using Model Test and Numerical Simulations

모형시험과 수치해석을 이용한 하중조건 변화에 따른 소형선박의 저항성능 변화에 관한 연구

  • Jun-Taek, Lim (Graduate School of Mokpo National Maritime University) ;
  • Michael (Graduate School of Mokpo National Maritime University) ;
  • Nam-Kyun, Im (Department of Navigation Science, Mokpo National Maritime University) ;
  • Kwang-Cheol, Seo (Department of Naval Architecture & Ocean Engineering, Mokpo National Maritime University)
  • 임준택 (목포해양대학교 대학원) ;
  • 마이클 (목포해양대학교 대학원) ;
  • 임남균 (목포해양대학교 항해학부) ;
  • 서광철 (목포해양대학교 조선해양공학과)
  • Received : 2023.09.20
  • Accepted : 2023.10.27
  • Published : 2023.10.31

Abstract

Weight is a critical factor in the ship design process given that it has a substantial impact on the hydrodynamic performance of ships. Typically, ships are optimally designed for specific conditions with a fixed draft and displacement. However, in reality, weight and draft can vary within a certain range owing to operational activities, such as fuel consumption, ballast adjustments, and loading conditions . Therefore, we investigated how resistance changes under three different loading conditions, namely overload, design-load, and lightship, for small craft, using both model experiments and numerical simulations. Additionally, we examined the sensitivity of weight changes to resistance to enhance the performance of ships, ultimately reducing power requirements in support of the International Maritime Organization's (IMO) goal of reducing CO2 emissions by 50% by 2050. We found that weight changes have a more significant impact at low Froude Numbers. Operating under overload conditions, which correspond to a 5% increase in draft and an 11.1% increase in displacement, can lead to a relatively substantial increase in total resistance, up to 15.97% and 14.31% in towing tests and CFD simulations, respectively.

선박의 설계과정에 있어, 선박의 중량은 유체역학적 성능에 큰 영향을 미치는 가장 중요한 요소 중 하나이다. 선박은 일반적으로 최적의 흘수와 배수량을 갖는 하나의 조건으로 설계되지만, 실제로는 연료의 소비, 선박 평형수의 충전과 적재 조건과 같은 운항 활동으로 인해 선박의 중량 및 흘수가 일정 범위 내에서 바뀐다. 본 연구에서는 소형선박을 대상으로 3가지 하중조건에 따른 선박의 저항성능 변화를 모형실험과 수치해석을 통해 연구하였다. 마지막으로 2050년까지 CO2 배출 가스를 50% 감축한다는 국제해사기구(IMO) 목표를 따라 선박의 저항 성능을 개선하여 동력 요구 사항을 줄이기 위해 선박의 중량 변화에 따른 저항성능의 민감도를 연구하였다. 연구 결과, 선박의 중량변화에 따른 효과는 낮은 프루드 수에서 크게 나타나는 것으로 확인되며, 저항성능에 대한 연구 결과, 설계 흘수의 적재조건을 기준으로 배수량이 11.1% 증가하고, 흘수가 5% 증가한 Over load의 적재조건에서 운항 시 선체의 총 저항이 모형시험과 CFD 시뮬레이션에서 각각 15.97%, 14.31%까지 증가하는 것을 볼 수 있다.

Keywords

Acknowledgement

This research was supported by a grant (20015029) of Regional Customized Disaster-Safety R&D Program, funded by Ministry of Interior and Safety (MOIS, Korea).

References

  1. Begovic, E. and C. Bertorello(2012), Resistance assessment of warped hullform. Ocean Engineering, 56, pp. 28-42. https://doi.org/10.1016/j.oceaneng.2012.08.004
  2. Campbell, R., M. Terziev, T. Tezdogan, and A. Incecik(2022), Computational fluid dynamics predictions of draught and trim variations on ship resistance in confined waters. Journal of Applied Ocean Research, 126, 103301.
  3. Equasis(2020), The 2020 world merchant fleet statistics from Equasis. Saint-Malo: Equasis.
  4. Farkas, A., N. Degiuli, and I. Martic(2018), Assessment of hydrodynamic characteristics of a full-scale ship at different draughts. Journal of Ocean Engineering, 156, pp. 135-152. https://doi.org/10.1016/j.oceaneng.2018.03.002
  5. Gao, X., K. Sun, S. Shi, B. Wu, and Z. Zuo(2019), Research on influence of trim on a container ship's resistance performance. Journal of Physics: Conference Series, 1300, 012015.
  6. IMO(2018), Guidelines on the method of calculation of the attained energy efficiency design index (EEDI) for new ships. Marine Protection Environment Committee, MEPC.212(63).
  7. ITTC(2014a), ITTC - Recommended Procedures and Guidelines - General Guideline for Uncertainty Analysis in Resistance Tests (7.5-02-02-02). International Towing Tank Conference.
  8. ITTC(2014b), ITTC - Recommended Procedures and Guidelines - Practical Guidelines for Ship CFD Applications (7.5-03-02-03). International Towing Tank Conference.
  9. ITTC(2017), ITTC - Recommended Procedures and Guidelines - Uncertainty Analysis: Instrument Calibration (7.5-01-03-01). International Towing Tank Conference.
  10. ITTC(2021), ITTC - Recommended Procedures and Guidelines - Example for Uncertainty Analysis of Resistance Tests in Towing Tanks (7.5-02-02-02.1). International Towing Tank Conference.
  11. Jee, H., Y. Lee, D. Kang, Y. Ha, Y. Choi, and J. Yu(2009), Resistance performance of Korean small coastal fishing boat in low-speed range, Journal of the Society of Naval Architects of Korea, 46(1), pp. 10-23. https://doi.org/10.3744/SNAK.2009.46.1.010
  12. Kang, D., J. Yu, and Y. Lee(2007), A study on the hull form design with minimum resistance for domestic coastal fishing boats. Journal of the Soecity of Naval Architects of Korea, 44(4), pp. 349-359. https://doi.org/10.3744/SNAK.2007.44.4.349
  13. Kim, H. and Y. Lee(1984), Research on modernization of small fishing boats. KIMM.
  14. Lee, Y.(1984), A study on the EHP estimation and design procedure of small fishing boat's hull form. Bulletin of the Society of Naval Architects of Korea, 21(3), pp. 1-10.
  15. Lee, Y., J. Yu, K. Kim, and D. Kang(2006), A study on the effecitve horsepower estimation for domestic coastal fishing vessels. Journal of the Society of Naval Architects of Korea, 43(3), pp. 313-321. https://doi.org/10.3744/SNAK.2006.43.3.313
  16. Menter, F. R.(1994), Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), pp. 1598-1605. https://doi.org/10.2514/3.12149
  17. Park, D. -M., Y. Kim, M. -G. Seo, and J. Lee(2016), Study on added resistance of a tanker in head waves at different drafts. Journal of Ocean Engineering, 111, pp. 569-581. https://doi.org/10.1016/j.oceaneng.2015.11.026
  18. Richardson, L. F.(1927), The deferred approach to the limit. Transactions of the Royal Society of London, 226, pp. 299-361.
  19. Rosenfeld, M. and D. Kwak(1991), Time-dependent solutions of viscous incompressible flows in moving co-ordinates. International Journal for Numerical Methods in Fluids, Volume 13, pp. 1311-1328. https://doi.org/10.1002/fld.1650131008
  20. Wang, H., R. Zhu, L. Zha, and M. Gu(2022), Experimental and numerical investigation on the resistance characteristics of a high-speed planing catamaran in calm water. Journal of Ocean Engineering, 258, 111837.
  21. Yang, Y., H. Tu, L. Song, L. Chen, D. Xie, and J. Sun(2021), Research on accurate prediction of the container ship resistance by RBFNN and other machine learning algorithms. Journal of Marine Science and Engineering, 9(4), 376.
  22. Yu, J. and Y. Lee(2007), A study on the bow wave characteristics for the resistance-minimized hull form of small fishing boat. Journal of the Society of Naval Architects of Korea, 45(2), pp. 124-131.
  23. Yu, J., Y. Lee, A. Park, Y. Ha, C. Park, and Y. Choi(2011), A study on the resistance performance of Korean high-speed small coastal fishing boat. Journal of the Society of Naval Architects of Korea, 48(2), pp. 158-164. https://doi.org/10.3744/SNAK.2011.48.2.158