DOI QR코드

DOI QR Code

Diffusion Prediction of pH variation owing to Scrubber Washwater Discharge using the Numerical Model in Busan New Port and Nearby Ocean

수치모델을 이용한 선박 스크러버 세정수 배출에 따른 부산신항과 인근 해역의 pH 변화 확산예측

  • Sunho Kim (Affiliated Marine Disaster Prevention Laboratory, Sea&River Technology Inc.) ;
  • Seungheon Song (Affiliated Marine Disaster Prevention Laboratory, Sea&River Technology Inc.) ;
  • Byungcheol Oh (Affiliated Marine Disaster Prevention Laboratory, Sea&River Technology Inc.) ;
  • Dasom Kim (Affiliated Marine Disaster Prevention Laboratory, Sea&River Technology Inc.) ;
  • Moonjin Lee (Ocean and Maritime Digital Technology Research Division, Korea Research Institute of Ships and Ocean Engineering) ;
  • Tae-sung Kim (Ocean and Maritime Digital Technology Research Division, Korea Research Institute of Ships and Ocean Engineering)
  • 김선호 ((주)해강기술 부설해양방재연구소) ;
  • 송승헌 ((주)해강기술 부설해양방재연구소) ;
  • 오병철 ((주)해강기술 부설해양방재연구소) ;
  • 김다솜 ((주)해강기술 부설해양방재연구소) ;
  • 이문진 (선박해양플랜트연구소 해양공공디지털연구본부) ;
  • 김태성 (선박해양플랜트연구소 해양공공디지털연구본부)
  • Received : 2023.09.08
  • Accepted : 2023.10.27
  • Published : 2023.10.31

Abstract

In this study, diffusion predictions were performed to examine the impact on the nearby ocean when scrubber-equipped vessels discharged washwater at the Busan New Port. Although the concentration of Dissolved Inorganic Carbon (DIC) in the washwater was constant, we evaluated the different pH conditions at spring and neap tide. When a vessel discharged washwater for 24 h, the pH decreased by 0.076 and 0.083, during spring and neap tide, respectively. In the case of DIC, the concentration increased by 0.561mg/L and 0.612mg/L. Assuming 24 vessels, which is the maximum permissible capacity in Busan New Port, the pH decreased by 0.200 and 0.545, DIC increased by 1.464mg/L and 3.629mg/L. Generally, considering that the pH is 6.1 when scrubbers treat washwater, if one vessel discharges washwater for 24 h, the decrease was calculated to be 33.7 times greater than the annual pH change in coastal waters in South Korea. In the case of 24 vessels, it was predicted to cause stratification of the surface layer for more than one day and affect up to 4m depth.

본 연구에서는 부산신항에서 스크러버를 장착한 선박이 세정수를 배출하였을 때 인근 해역에 미치는 영향을 검토하기 위해 확산예측을 수행하였다. 세정수에 포함된 용존무기탄소(DIC)의 농도를 통제한 채로 세정수의 pH 조건별로 해역에 미치는 영향을 대조기와 소조기로 나누어 평가하였다. 선박 1대에서 24시간 동안 세정수를 배출할 때, pH가 최대 0.076, 0.083 감소하였다. DIC의 경우 0.561mg/L, 0.612mg/L 증가하였다. 부산신항에 수용가능한 선박수인 24대를 전부 가정하여 실험하였을 경우 pH는 0.200, 0.545 감소하였고, DIC는 1.464mg/L, 3.629mg/L 증가하였다. 일반적으로 스크러버가 세정수를 처리하였을 때 pH 6.1인 것을 감안하여 선박 1대에서 pH 6.1인 조건으로 24시간 동안 세정수를 배출하는 경우 우리나라 연근해의 연간 pH 변화량보다 약 33.7배 더 큰 폭으로 감소하는 것으로 계산되었다. 선박이 24대일 경우에는 하루이상 표층의 성층화를 유발하고 수심 4m까지 영향을 주는 것으로 예측되었다.

Keywords

Acknowledgement

이 논문은 2023년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구이다(RS-2021-KS211535, 해양 위험유해물질(HNS) 배출 등 관리기술 개발사업, 해양산업시설 배출 위험유해물질 영향평가 및 관리기술 개발).

References

  1. Busan Port Authority(2023), 2023 BPA Port Development Status, https://www.busanpa.com.
  2. Choi, B. K., Y. S. Park, N. E. Kim, S. R. Kim, H. G. Park, and D. S. Shin(2022), A Study on the Safety Improvement of Vessel Traffic in the Busan New Port Entrance, Journal of Navigation and Port Research, Vol. 46, No. 4, pp. 321-330.
  3. Choi, J. S., J. G. Kim, B. H. Park, and J. Y. Lee(2017), Study on Wet Scrubber for SOx/NOx Treatment in Ship Flue Gas, The Korean Society of Applied Science and Technology, Vol. 34, No. 1, pp. 183-188.
  4. Dickson, A. G.(1981), An Exact Definition of Total Alkalinity and a Procedure for the Estimation of Alkalinity and Total Inorganic Carbon from Titration Data, Deep-Sea Research Part A. Oceanographic Research Papers, Vol. 28, No. 6, pp. 609-623. https://doi.org/10.1016/0198-0149(81)90121-7
  5. Eom, H. K., B. H. Park, S. K. Jeong, and S. S. Kim(2019), Trend and Prospect of Scrubber Technology for Regulatory on Sulfur Content in Marine Fuel Oil, Korean Industrial Chemisty News, Vol. 22, No. 5, pp. 1-13.
  6. International Maritime Organization(2015), Resolution MEPC. 259(68), 2015 Guidelines for Exhaust Gas Cleaning Systems, MEPC 68/21/Add.1, Annex 1, 41 p.
  7. Jung, I. H.(2020), IMO International Maritime Policy Trend Vol. 38(Sulphur cap 2020), Korea Maritime Institute, 5 p.
  8. Kim, T. W., D. S. Kim, G. H. Park, Y. H. Ko, and A. R. Mo(2022), A Review on Ocean Acidification and Factors Affecting It in Korean Waters, Journal of Korean Earth Science Society, Vol. 43, No. 1, pp. 91-109. https://doi.org/10.5467/JKESS.2022.43.1.91
  9. Lee, K., L. T. Tong, F. J. Millero, C. L. Sabine, A. G. Dickson, C. Goyet, G. H. Park, R. Wanninkhof, R. A. Feely, R. M. and Key(2006a), Global Relationships of Total Alkalinity with Salinity and Temperature in Surface Waters of the World's Oceans, Geophysical Research Letters, Vol. 33, L19605.
  10. Lee, J. S., K. T. Lee, C. K. Kim, G. H. Park, J. H. Lee, Y. G. Park, and S. G. Gang,(2006b), Influence of the Increase of Dissolved CO2 Concentration on the Marine Organisms and Ecosystems, Journal of the Korean Society for Marine Environmental Engineering, Vol. 9, No. 4, pp. 243-252.
  11. Lewis, P. D. E. and D. W. R. Wallace(2006), MS Excel Program Developed for CO2 System Calculations, ORNL/CDIAC-105a, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.
  12. Matsumoto, K., T. Takanezawa, and M. Ooe(2000), Ocean Tide Models Developed by Assimilating TOPEX./POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model Around Japan, Journal of Oceanography, 56, pp. 567-581. https://doi.org/10.1023/A:1011157212596
  13. Murray, M. T.(1964), A General Method for the Analysis of Hourly Heights of the Tide. International Hydrographic Review, Vol. 41, No. 2, pp. 91-101.
  14. Millero, F. J., T. B. Graham, F. Huang, H. Bustos-Serrano, and D. Pierrot(2006), Dissociation Constants of Carbonic Acid in Seawater as a Function of Salinity and Temperature, Marine Chemistry, Vol. 100, pp. 80-94. https://doi.org/10.1016/j.marchem.2005.12.001
  15. Ministry of Oceans and Fisheries(2019), Development of Policies to Prevent Marine Pollution by Vessels, 67 p.
  16. National Institute of Fisheries Science(2022), Press Release, Research Planning and Coordination Department Climate Change Research Division, https://nifs.go.kr.
  17. Osipova, L., E. Georgeff, and B. Comer(2021), Global Scrubber Washwater Discharges under IMO's 2020 Fuel Sulfur Limit, International Council on Clean Transportation, 27 p.
  18. Roy, R. N., L. N. Roy, K. M. Vogel, C. Porter-Moore, T. Pearson, and C. E. Goo(1993), The Dissociation Constants of Carbonic Acid in Seawater at Salinities 5 to 45 and Temperature 0 to 45℃, Marine Chemistry, Vol. 44, pp. 249-267. https://doi.org/10.1016/0304-4203(93)90207-5
  19. Teuchies, J., T. J. S. Cox, K. V. Itterbeeck, F. J. R. Meysman, and R. Blust(2020), The Impact of Scrubber Discharge on the Water Quality in Estuaries and Ports, Environment Sciences Europe, Vol. 32, Ariticle No. 103, pp. 1-11.
  20. Yun, G. H. and M. K. Kang(2021), A Theoretical Proposal for the Treatment of Scrubber Washwater for Cargo Operation, The Journal of Fisheries and Marine Sciences Education, Vol. 33, No. 4, pp. 913-928.