DOI QR코드

DOI QR Code

태풍 곤파스와 솔릭 전과 후의 고창 동호리 사질 조간대 표층 퇴적물과 집적률 특성

Characteristics of Surface Sediments and Accumulation before and after the Typhoon Kompasu and Soulik in the Gochang Donghori Sandy Intertidal Flat, Korea

  • 강솔잎 (전북대학교 과학교육학부/과학교육연구소) ;
  • 양우헌 (전북대학교 과학교육학부/과학교육연구소)
  • Sol Ip Kang (Division of Science Education and Institute of Science Education, Jeonbuk National University) ;
  • Woo Hun Ryang (Division of Science Education and Institute of Science Education, Jeonbuk National University)
  • 투고 : 2023.08.31
  • 심사 : 2023.10.10
  • 발행 : 2023.10.31

초록

대조차 개방형 조간대 퇴적물에 대한 태풍 효과를 한국 서해안 고창 동호리 조간대에서 연구하였다. 2010년 태풍 곤파스 전·후와 2018년 솔릭 전·후에 나타난 표층 퇴적물 조직, 집적률, 퇴적상 변화를 관측하였다. 두 개의 태풍 곤파스와 솔릭은 각각 2010년 9월 1일과 2일, 2018년 8월 23일과 24일 사이에 한반도 남서부 연안에 상륙하여 내륙을 관통하였다. 태풍 곤파스 전·후와 솔릭 전·후에 고창 동호리 조간대의 측선을 따라 30 m 간격으로 표층 퇴적물을 채취하고 집적률을 측정하였다. 동호리 조간대를 평균고조면, 평균해수면, 평균저조면을 기준으로 고조대, 중조대, 저조대로 세분하여 연구하였다. 두 태풍 모두 태풍 후에 고조대는 퇴적되었고 중조대와 저조대는 침식되었다. 고조대에서 저조대 방향으로 갈수록 집적률이 감소하였다. 고조대의 표층 퇴적물 조직은 두 태풍 모두 태풍 후에 평균 입도는 세립해지고 분급은 양호해졌다. 중조대의 표층 퇴적물 조직은 변화가 거의 없었으며, 저조대는 일부 구간에서 태풍 후에 띠 형태의 퇴적체가 나타났다.

Typhoon effects on macrotide open-coast intertidal sediments were investigated in the Gochang Donghori sandy intertidal flat on the Korean western coast. Variations in the surface sediment texture, accumulation, and sedimentary facies were observed before and after Typhoons Kompasu in 2010 and Soulik in 2018. Two typhoons, Kompasu and Soulik, landed on the southwestern coast of the Korean Peninsula and passed inland between September 1st and 2nd, 2010, and August 23rd and 24th, 2018, respectively. Surface sediments and their accumulation before and after the typhoon were sampled and measured at intervals of 30 m along a survey line on the Donghori intertidal flat. The intertidal area was divided into high, middle, and lower tidal zones based on the mean high, mean sea, and mean low water levels, respectively. Surface accumulation represents deposition in the upper tidal zone and erosion in the middle and lower tidal zones following both typhoons. The accumulation decreased from the high to the lower tidal zones. Regarding the surface sediment texture of the high tidal zone, the mean grain size, fines, and sorting improved after both typhoons. The surface sediment texture of the middle tidal zone showed rare variations and band-shaped deposits appeared at some lower tidal zone intervals.

키워드

과제정보

논문 심사와 함께 논문의 부족한 부분을 세심하게 수정해 주신 익명의 심사위원께 감사드립니다. 실내에서 함께 토론을 해 주신 전북대학교 윤재린님에게 감사드립니다. 입도분석 기기 사용과 실험에 도움을 주셨던 한국지질자원연구원 진재화, 공기수 박사님께 감사드립니다. 이 논문은 한국과학기술정보통신부 한국연구재단의 연구과제(NRF-2022R1F1A1063126)와 해양수산부 한국해양과학기술진흥원의 연구과제(PJT 200538)로 수행된 연구 결과입니다.

참고문헌

  1. Blott, S.J. and Pye, K., 2001, GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26, 1237-1248.  https://doi.org/10.1002/esp.261
  2. Blott, S.J., 2010, GRADISTAT Version 8.0: A grain size distribution and statistics package for the analysis of unconsolidated sediments by sieving or laser granulometer. Instructions on the use of the GRADISTAT program, 5 p.
  3. Choi, K.H., Jung, P.M., Kim, Y.M., and Suh, M.H., 2012, Erosion and recovery of coastal dunes after tropical storms. Journal of the Geomorphological Association of Korea, 19, 17-27. (in Korean) 
  4. Choi, K.S., Cha, Y.M., and Kim, T.R., 2012, Decadal change of frequency in Korea landfalling tropical cyclone activity. Journal of the Korean Earth Science Society, 33(1), 49-58. (in Korean)  https://doi.org/10.5467/JKESS.2012.33.1.49
  5. Claudino-Sales, V., Wang, P., and Horiwitz, M.H., 2008, Factors controlling the surviaval of coastal dunes during multiple hurricane impacts in 2004 and 2005: Santa Rosa barrier island, Florida. Geomorphology, 95, 295-315.  https://doi.org/10.1016/j.geomorph.2007.06.004
  6. Davis, R.A.Jr. and Fitzgerald, D.M., 2004, Beaches and coasts. Blackwell Publishing, Malden, USA, 419 p.
  7. Folk, R.L. and Ward, W.C., 1957, Brazos river bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27, 3-26.  https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  8. Folk, R.L., 1968, Petrology of sedimentary rocks. hemphill's, Austin, USA, 170 p.
  9. Garrison, T.S., 2012, Oceanography: an invitation to marine science. Cengage Learning, USA, 608 p.
  10. Gochanggun, 2023, Gochang: unesco. https://www.gochang.go.kr/gcbr/index.gochang (July 21th 2023) 
  11. Haslett, S., 2008, Coastal systems. Routledge, London, UK, 218 p. 
  12. Hobbs, C.H., 2012, The beach book: science of the shore. Columbia University Press, New York, 195 p. 
  13. Houser, C. and Hamilton, S., 2009, Sensitivity of post-hurricane beach and dune recovery to event frequency. Earth Surface Processes and Landforms, 34, 613-628.  https://doi.org/10.1002/esp.1730
  14. Jun, H., Chang, T.S., and Do, K., 2021, Field observation and numerical modelling for morphological response in the macro-tidal beach. Journal of Coastal Disaster Prevention, 8(2), 55-68. (in Korean)  https://doi.org/10.20481/kscdp.2021.8.2.55
  15. Kang, S.I., 2019, Seasonal variation and before-and-after typhoon characteristics of surface topography and sediments on the Gochang open-coast intertidal flat, southwestern Korea. Unpublished Ph.D. dissertation, Jeonbuk National University, Jeonju, Korea, 194 p. (in Korean) 
  16. Kang, S.I., Ryang, W.H., and Chun, S. S., 2019, Characteristics of Surface Topography and Sediments before and after the Typhoon Kompasu in the Gochang Open-Coast Intertidal Flat, Korea. Journal of the Korean earth science society, 40, 149-162. (in Korean)  https://doi.org/10.5467/JKESS.2018.40.2.149
  17. Kang, S.I., Ryang, W.H., and Chun, S.S., 2015, Characteristics of surface topography variation on the Gochang beach, southwestern coast of Korea. Journal of the Korean Earth Science Society, 36, 533-542. (in Korean)  https://doi.org/10.5467/JKESS.2015.36.6.533
  18. Kang, S.I., Ryang, W.H., Jin, J.H., and Chun, S.S., 2016, Seasonal variation of surface sediments in 2014 on the Gochang open-coast intertidal flat, southwestern Korea. Journal of the Korean Earth Science Society, 37, 89-106. (in Korean)  https://doi.org/10.5467/JKESS.2016.37.2.89
  19. Kang, T.S., Lee, J.S., Kim, J.B., and Kim, J. K., 2019, Characteristics of erosion variation at Haeundae Beach due to multiple typhoons. Journal of the Korean Society of Marine Environment and Safety, 25(7), 920-926. (in Korean)  https://doi.org/10.7837/kosomes.2019.25.7.920
  20. Kim, J.H., Ho, C.H., Lee, M.H., Jeong, J.H., and Chen, D., 2006, Large increase in heavy rainfall associated with tropical cyclone landfalls in Korea after the late 1970s. Geophysical Research Letters, 33(18). 
  21. Kim, Y.R., Kee, K.D., and Yang, J.H., 2012, Weathering characteristics of granitic regolith in Southern part of the Korean peninsula. Journal of the Korean Geomorphological Association, 19(4), 123-137. (in Korean) 
  22. Korea Hydrographic and Oceanographic Administration, 2010, Tidal deviation calculation table. http://www.khoa.go.kr/koofs/kor/tide/tide.do (July 21th 2023) 
  23. Korea Hydrographic and Oceanographic Administration, 2013, Tidal bench mark. http://www.khoa.go.kr/koofs/kor/tide/tbm_view.do?tl_id=502 (December 21th 2018) 
  24. Korea Hydrographic and Oceanographic Administration, 2018, Tidal deviation calculation table. http://www.khoa.go.kr/koofs/kor/tide/tide.do (July 21th 2023) 
  25. Korea Hydrographic and Oceanographic Administration, 2018, Tidal deviation calculation table. http://www.khoa.go.kr/koofs/kor/tide/tide.do (July 21th 2023) 
  26. Korea Institute of Geoscience and Mineral Resources, 2002, Study on the coastal geology of west coast and the terrestrial wetlands: I. Study on the coastal geology of west coast. 242 p. (in Korean) 
  27. Korea Meteorological Administration, 2010, Monthly report of automatic weather system data. https://data.kma.go.kr/data/grnd/selectAwsRltmList.do?pgmNo=56 (July 21th 2023) 
  28. Korea Meteorological Administration, 2011, Typhoon analysis report in 2010. 162 p. (in Korean) 
  29. Korea Meteorological Administration, 2018a, Monthly report of automatic weather system data. https://data.kma.go.kr/data/grnd/selectAwsRltmList.do?pgmNo=56 (July 21th 2023) 
  30. Korea Meteorological Administration, 2018b, Coastal wave buoy of marine data. http://data.kma.go.kr/svc/dts/sea/seaFargoBuoyRltmDtaReqstList.do?lrgClssCd=SEA&mddlClssCd=SEA03 (July 21th 2023) 
  31. Korea Meteorological Administration, 2019, Typhoon analysis report in 2018. 118 p. (in Korean) 
  32. Korea National Typhoon Center, 2023, Current situation of typhoon. http://typ.kma.go.kr/TYPHOON/statistics/statistics_02_1.jsp (July 21th 2023) 
  33. Lee, B.J. and Lee, S.R., 2001, Geological report of the Gochang sheet (Scale 1:50000). Korea Institute of Geosciences and Mineral Resources, 43 p. 
  34. Lee Y.Y., Chang T.S., 2020, Morphologic Response of Gravel Beach to Typhoon Invasion-A Case Study of Gamji Beach Taejongdae in Busan. Journal of the Korean Earth Science Society, 41, 19-30. (in Korean)  https://doi.org/10.5467/JKESS.2020.41.1.19
  35. Na, H. and Jung, W.S., 2020, Autumn typhoon affecting the Korean Peninsula-past and present characteristics. Journal of Korean Society for Atmospheric Environment, 26(4), 482-491. (in Korean)  https://doi.org/10.5572/KOSAE.2020.36.4.482
  36. National Geographic Information Institute, 2020, The national atlas of Korea. 251 p. 
  37. Park, Y.H., 2022, A Study on Changes in the Characteristics of Typhoons around the Korean Peninsula for Coastal Disaster Prevention. Journal of Korean Society of Coastal and Ocean Engineers, 34, 325-334. (in Korean)  https://doi.org/10.9765/KSCOE.2022.34.6.325
  38. So, K.S., Ryang, W.H., Kang, S.I., and Kwon, Y.K., 2010, Seasonal variation of surface sediments in the Dongho beach, Gochanggun, Korea. Journal of the Korean Earth Science Society, 31, 708-719. (in Korean)  https://doi.org/10.5467/JKESS.2010.31.7.708
  39. Son, D.H., Yoo, J.S., and Shin, H.H., 2019, Sensitivity Analysis in the Prediction of Coastal Erosion due to Storm Events: case study-Ilsan beach. Journal of Coastal Disaster Prevention, 6(3), 111-120. (in Korean)  https://doi.org/10.20481/kscdp.2019.6.3.111
  40. Stone, G. W., Liu, B., Pepper, D. A., and Wang, P., 2004, The importance of extratropical and tropical cyclones on the short-trem evolution of barrier islands along the northern Gulf of Mexico, USA. Marine Geology, 210, 63-78.  https://doi.org/10.1016/j.margeo.2004.05.021
  41. Udden, J.A., 1914, Mechanical composition of clastic sediments. Bulletin of Geological Society of America, 25, 655-744.  https://doi.org/10.1130/GSAB-25-655
  42. Wentworth, C.K., 1922, A scale of grade and class terms for clastic sediments. Journal of Geology, 30, 377-392.  https://doi.org/10.1086/622910
  43. Yu, J. J., Kim, D., and Yoon, J., 2018, A Study on the Short-term Morphological Beach Changes of Pado-ri Using UAS-based DEM: Focusing on before and after Typhoon Soulik. Journal of the Association of Korean Geographers, 7(3), 303-317. (in Korean)  https://doi.org/10.25202/JAKG.7.3.5